Instant IDEs: Supporting New Languages in the CDT

Jeffrey Overbey
University of lllinois at Urbana-Champaign
MC 258
201 North Goodwin
Urbana, IL 61801

overbey2@cs.uiuc.edu

ABSTRACT

While Eclipse has greatly simplified the task of creating in-
tegrated development environments, creating a full-featured
IDE can still take years. Fortunately, for a large category
of languages—those that can be compiled with make and
debugged with gdb—the task can be simplified greatly. By
leveraging proposed multilingual extensions to the Eclipse
C/C*+ Development Tool (CDT), a modest IDE can be
created in far less time. As a proof of concept, we have
extended the CDT to support a gcc-based toy language
(Eightbol); with the multilingual extensions in place, the
Eightbol support code can be rewritten in its entirety in
less than an hour. The same extensions have been used to
implement version 3.0 of Photran, a full-featured IDE for
Fortran.

This work is being funded by IBM wunder the PERCS
project.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—program editors

General Terms

Languages, Language Tools, Integrated Development Envi-
ronments, Eclipse, CDT.

1. INTRODUCTION

The convenience of integrated development environments
(IDEs) is virtually unquestioned. Although a few program-
mers prefer to use emacs and a plethora of independent
command line tools (such as gdb, cvs, diff, and find),
many prefer a graphical environment where similar tools
are seamlessly integrated. Until very recently, IDEs have
typically been the creations of large corporations—Borland,
IBM, Sun, and Microsoft, to name a few—simply because

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’05, October 16-20, San Diego, California, USA.

Copyright 2005 ACM ...$5.00.

Craig Rasmussen
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

rasmussn@lanl.gov

they are very large, typically requiring several man-years to
create.

Eclipse has simplified the creation of IDEs by creating a
framework of common components—a customizable editor,
source control, a debugger framework, and project support,
among others. Even with all of this in place, creating a
full-featured IDE remains an arduous task.

Fortunately, though, for many languages, this does not
have to be the case. A large number of languages can be
compiled with make and debugged with gdb. For these lan-
guages, it is preferable to have a narrower framework where
a make-based build system, binary executable launcher, and
gdb-based debugger already exist.

The Eclipse C/Ct+ Development Tool (CDT) [1] is an
obvious starting point for such a framework: Its projects
are compiled with make, it can execute native executables,
and it contains a GUI interface to gdb. As part of our work
on Photran [5], an Eclipse-based IDE for Fortran, we have
identified a small number of modifications that allow the
CDT to support other languages in addition to C and C*+.
We introduce a conceptual change in the CDT user interface
and then describe an extension point which allows other
plug-ins to add languages to the CDT with a surprisingly
little amount of work.

2. CHANGES TO THE CDT

Before describing how to integrate a new language into
the CDT, we will give a brief overview of how the current
version of the CDT must be modified to support additional
languages.

2.1 User Interface Changes

Figure 1 illustrates a typical editing session in CDT 3.0.
Three things stand out as being C/C*+-specific: (1) the
editor and Outline view are customized for C/C++, (2) there
is a C/C** perspective, and (3) there is a C/C*T+ Projects
view. The following are not visible in the screenshot but are
also C/C**-gpecific: (4) there are C and C*++ project types
and New Project wizards, (5) the launcher menu item reads
“Run Local C Application,” and (6) many icons and images
are decorated for C and Ct+.

Consider how these can be made more language-neutral.
Regarding (1), we will return to the issue of editors and
Outline views later, as these are necessarily language-
specific. The remaining items (2-6), however, do not need
to be C/Ct+-specific. Figure 2 illustrates two superficial
changes: (2) the C/C** perspective has been renamed to
the Make perspective, and (3) the C/C*+ Projects view

™ ciC++ - mainc - Eclipse Platform T l=lslx|

File Edit Refactor Navigate Search Project Run Window Help

Ci~ Eiv & [y @~ | - O Q- B |Boc++ >
&
#include <stdio.h> -
B & ¥ B 8o e 7
[~ 125 SampleProject int main(int argc, char **argv) o stdio.h 4
b & Binaries { @ main
b (Hincludes printf(t‘n‘HeHu, COTIAN") ® a_function
P (= Debug ' return 8; ~ @ a_struct
~ & mainc o a
Hstdion vaid a functinnlint n 5 © b
© a_function o 4 o b
@ main = console &3 . Properties g~ =0

= @ a_struct

A console is not available
°a
ob

oc

JSampleProject/main.c

Figure 1: CDT 3.0 (Unmodified)

is now the Make Projects view. Similarly, (4) the C and
C*+ project types and New Project wizards can be replaced
with generic Make project types and a New Make Project
wizard, (5) the launcher menu item can read “Run Local
Application,” and (6) icons and images can easily be made
language-neutral. Most importantly, all of these changes are
superficial: They involve changing labels and icons, but the
underlying CDT code can remain untouched.

From the user’s perspective, these changes turn the CDT
into a generic IDE for projects that are built using make.
Rather than creating a C/C*+ project, the user creates a
Make project; rather than running a C Local Application,
he runs a (generic) Local Application. In this environment,
it makes just as much sense to develop a Fortran or Ada
application as it does to develop a C/C*+ application.

2.2 Core Changes

Observe the C/Ct+ Projects view in Figure 1 or, equiv-
alently, the Make Projects view in Figure 2. Notice that
the CDT has identified main.c as being C source code and
is able to provide a high-level outline of its contents. We
would like it to do the same for other languages.

The Make Projects view is essentially a visualization of
the CDT model, a tree data structure which records the
contents of all Make Projects in the workspace. The highest
levels of the model mirror the resource tree, i.e., the model
includes all of the folders and files in each project. More
importantly, though, when a file is identified as source code,
that file is parsed, and its high-level contents are added to
the model as well.

To integrate additional languages into the model, we must
do two things. First, we must allow the CDT to identify non-
C/C++ files as valid source code. Second, we must provide a
means for parsing languages other than C and Ct+ so that
the model can include functions, classes, etc. in non-C/C++
source files.

We can accomplish both of these by adding an extension
point to the CDT Core plug-in. Not surprisingly, extensions
will be asked to (1) identify the types of files they can parse,
and (2) provide a model builder which actually does the
parsing and populates the model. The next section discusses
this in more detail.

Make - main.c - Eclipse Platform W
File Edit Refactor Navigate Search Project Run Window Help
| b o | B B @ | % O Q- = [Fmake| 2
R A - P

e ‘ & #include <stdio.h> B W e ¥
~ 120 SampleProject int main(int argc, char **argv) H stdio.h =

I < Binaries { ® main

printf(“Hello, CDT!\n");

b &includes
& return 0;

® a_function

I (= Debug 3 ~ @ a_struct
o
Hstdioh vaid a functinnfint n ° b =
® a_function [l 4] o _c =
O wEm El Console 33 . Properties = B~ > =0

= @a_struct

A console is not available.

°ob

°c

JSampleProject/main.c ‘

Figure 2: UI Modifications for Language Neutrality

3. INTEGRATING A NEW LANGUAGE

Amid the discussion in the last section, we identified three
things that must be supplied before a language is truly
integrated into the CDT:

e an editor,

e a list of (source code) filename extensions, and

e a model builder.
There are two aspects of the CDT that did not have to be
modified to support additional languages but will need to be
considered when integrating a new language into the CDT:

e error parsers, and

e the managed build system.

3.1 Building an Editor, Part 1

The first step in integrating a new language is to create
a new plug-in and start building an editor for the language.
Currently, this means building an ordinary Eclipse editor,
usually based on JFace Text.! Editors are described well in
several books, including [2].

The editor will be modified in Section 3.6 to integrate with
the CDT. Specifically, we will replace its document provider
and ruler context menu, and we will allow CDT to provide
the contents of the Outline view.

3.2 Registering Content Types

Rather than looking directly at file extensions, the CDT
uses content types to identify what files correspond to source
code in each supported language. When a language is added,
a content type for its source files needs to be registered with
the Eclipse runtime. Each source filename extension for the
language should be associated with this content type. For
example:

1Can it be easier than this? Maybe. However, nearly all of
the customizable aspects of an editor—syntax highlighting schemes,
auto indent strategies, double-click strategies, formatting strategies,
folding, and content assist schemes—tend to be language-specific. At
the same time, one could argue that each language should not have to
supply its own preference pages for syntax coloring. So while a CDT
editor framework does not exist now, it might in the future.

<extension point="org.eclipse.core.runtime.contentTypes">
<content-type
id="xyzSource"
name="XYZ Language Source File"
base-type="org.eclipse.core.runtime.text"
priority="high"/>
<file-association
content-type="xyzSource"
file-extensions="xyz"/>
</extension>

It is important to make sure that the list of filename exten-
sions declared here matches the list of filename extensions
associated with the editor created in the previous step.

3.3 Building an TAdditionallLanguage

Once an editor has been created and a content type
declared, we can begin to integrate with the aforementioned
CDT extension point.

First, we need to create a class, say XYZLanguage, which
implements the IAdditionalLanguage interface declared in
the org.eclipse.cdt.core.addl _langs package:
public interface IAdditionalLanguage {

public String getName();

public Collection<String> getRegisteredContentTypelds();

public IModelBuilder createModelBuilder(

org. eclipse .cdt. internal . core. model. TranslationUnit tu,
Map newElements);

}

The getName method should return the name of the
language being added, e.g., “Fortran” or “XYZ Sample
Language.” The method getRegisteredContentTypelds
simply lists the content type(s) declared in the previous step.
Each content type name should be fully qualified, i.e., the
name of the plug-in followed by the name of the content type
(XyzLanguagePlugIn.xyzSource). We will postpone our
discussion of createModelBuilder until the next section.

After the XYZLanguage class has been created, we can tie it
into the AdditionalLanguages extension point in the CDT
Core plug-in. First, we must specify org.eclipse.cdt.core
as a dependency of our new language plug-in. Then
we can extend the AdditionalLanguages extension point,
supplying the fully-qualified name of our class:

<extension point="org.eclipse.cdt.core.AdditionallLanguages">

<language class="com.mycompany.XYZLanguage"/>
</extension>

3.4 Building a Model Builder

As described previously, each additional language needs to
supply a model builder which can parse files in that language
and add structural information to the CDT model. This is
done via the createModelBuilder method.

A model builder is simply an implementation of the inter-
face org.eclipse.cdt.core.addl _langs.IModelBuilder.
Its constructor takes a TranslationUnit, i.e., a file for which
a model needs to be created. Its parse method returns a Map
containing the elements that should appear in the Outline
view for that file.

A trivial parse method would look something like this
(the Outline produced is shown in Figure 3):

public Map parse(boolean quickParseMode) throws Exception {
Map newElements = new Map();

// Create a namespace as a child of the translation unit
Namespace ns = new Namespace(translationUnit, ”A Namespace”);
translationUnit.addChild(ns);

newElements.put(ns, ns.getElementInfo());

// Create a typedef as a child of the namespace
TypeDef td = new TypeDef(ns, ”A Typedef”);
ns.addChild(td);

newElements.put(td, td.getElementInfo());

// No parse errors were encountered
translationUnit . getElementInfo().setIsStructureKnown(true);
return newElements;

EE Outline §3 ” =8

B 8 & e ¥
= () ANamespace
T ATypedef

Figure 3: Outline produced by the trivial model
builder

Naturally, a model builder for a “real” language will be
more complicated than this, but the model is constructed in
the same way. When a parser for the language is available,
typically it will construct an abstract syntax tree for the
translation unit, and the model can be built by a Visitor
[4] on that tree. When a parser is not available, a more ad
hoc method may be used. For example, in Ct+, classes can
be identified by tokenizing the input and scanning for the
keyword class followed by an identifier.

3.5 Building New Model Elements

In the sample parse method above, we reused two model
classes from the CDT: Namespace and TypeDef. There
are also model classes for function declarations, structs,
classes, and a number of other entities. (For a complete list,
browse the org.eclipse.cdt.core.model.ICElement type
hierarchy.) For many languages, however, the existing model
classes are not sufficient. For example, Fortran has modules,
namelists, and block data, none of which have counterparts
in C or C*+.

To create a new model class, we simply need to im-
plement IAdditionallanguageElement, another interface
defined in the org.eclipse.cdt.core.addl_langs package.
TAdditionalLanguageElement extends ICElement, adding a
method getBaseImageDescriptor which returns an icon for
that element type, suitable for display in the Make Projects
and Outline views.

Although one is free to implement all of the ICElement
methods directly, it is far easier to subclass from a CDT
class. Photran’s model elements all subclass from the CDT’s
SourceManipulation class, for example.
public abstract class SampleElement

extends SourceManipulation

implements ICElement, IParent, ISourceReference,
TAdditionalLanguageElement {

public SampleElement(Parent parent, String identifier) {
super(parent, identifier, —1);

// To set position information within the file:
// setldPos(offset, length);

// setPos(offset, length);

// setLines(startLine, endLine);

public Object getBaseImageDescriptor() {
return XyzLanguagePlugln.
getImageDescriptor(”icons/sample.gif”);

3.6 Building an Editor, Part 2

After a model builder is functioning, source files for our
new language will have their functions, subroutines, etc.
displayed in the Make Projects view, just like C/CH+ files.
Now we will finish integrating our editor with the CDT.
First, we will integrate the CDT outline page, which uses the
model to display an outline of the file being edited. Then we
will make a slight change so that the user can set breakpoints
in our editor.

Before we can use the CDT outline page, we need to
replace our editor’s document provider with the CDT’s.
After org.eclipse.cdt.ui has been added as a dependency,
this can be done in the editor’s constructor with the
following line:

setDocumentProvider(CUIPlugin.getDefault().getDocumentProvider());

Typically, the document provider is where we set up
our editor’s partitioner, which controls syntax highlighting.
Since we do not have our own document provider anymore,
we need to do this elsewhere. We recommend overriding

protected void doSetInput(IEditorInput input)

in the editor class and setting the partitioner there.
To actually integrate the Outline page, we need to
implement getAdapter in the editor class as follows.>

protected CContentOutlinePage fOutlinePage;

public Object getAdapter(Class required) {
if (IContentOutlinePage.class.equals(required)) {
return getOutlinePage();

if (required == IShowInTargetList.class) {
return new IShowInTargetList() {
public String[] getShowInTargetIds() {
return new String[] { CUIPlugin. CVIEW_ID,
IPageLayout.ID_OUTLINE,
IPageLayout.ID_RES_NAV };

}
15
}

return super.getAdapter(required);

}

public CContentOutlinePage getOutlinePage() {
if (fOutlinePage == null) {
// For now, at least, the editor parameter can be null
fOutlinePage = new CContentOutlinePage(null);
fOutlinePage.addSelectionChangedListener(this);

setOutlinePageInput(fOutlinePage, getEditorInput());
return fOutlinePage;

}

public static void setOutlinePageInput(
CContentOutlinePage page,
IEditorInput input) {
if (page != null) {
IWorkingCopyManager manager =
CUIPlugin.getDefault().get WorkingCopyManager();
page.setInput(manager.get WorkingCopy (input));

}

2All of the methods in this section are identical between languages,
and nearly all are copied from CEditor. In the future, we plan to factor
these methods into a common superclass shared among the CEditor
and editors for other languages.

After the outline page is functioning, we may want the
editor to jump to the corresponding location when the user
selects an item in the Outline view. To do this, the editor
needs to implement ISelectionChangedListener. (If this
behavior is not needed, remove the line

fOutlinePage.addSelectionChangedListener(this);

from the code copied above.) For the time being, the
easiest way to do this is to copy the following methods from
CEditor:

public void selectionChanged(SelectionChangedEvent event)
private boolean isActivePart()
public void setSelection(ISourceRange element,

boolean moveCursor)

The only thing missing at this point is that the user cannot
set debug breakpoints in our editor. The CDT Debugger
plug-in contributes a Toggle Breakpoint menu item to the
context menu for the CDT editor’s ruler. The easiest way to
get the same actions in our editor is to “borrow” the CDT
editor’s ruler context menu. This can by done by appending
the following line to our editor’s constructor:

setRulerContextMenuld(” #CEditorRulerContext”);

Now we have a fully functioning editor. We can create
Make projects containing files for our language, edit those
files, and see them outlined in the Make Projects and
Outline views. If the underlying compiler for our language
produces binaries that can be debugged with gdb, we can do
that too—the CDT debugger will recognize breakpoints set
in our editor, and when those breakpoints are hit, Eclipse
will open our editor and allow the user to step through the
code as expected.

3.7 Building an Error Parser

When a user builds a program and make is run, the
output appears in the Console view. When the compiler
produces error messages, it is helpful for them to appear in
the Problems view as well, with corresponding red markers
appearing in the editor. This is done by error parsers.

Error parsers scan the output of make for error messages
from their associated compiler. When they see an error
message they can recognize, they extract the filename, line
number, and error description, and use this information to
populate the Problems view.

The CDT includes error parsers for several C/C*+ com-
pilers, including gcc and Visual CT+. However, if a compiler
for a new language does not produce error messages in one
of those formats, a new error parser will need to be written.

Fortunately, error parsers are straightforward to write.
The following is Photran’s error parser for Intel Fortran 8.1:
ok

* Error parser for Intel Fortran 8.1: Extracts file, line number,

* and error message from lines of the form

* fortcom: Error: test.f90, line 3: Message

*/

public class IntelFortranErrorParser implements IErrorParser {
public boolean processLine(String line, ErrorParserManager mgr)

String fortcom, severitystr , filestr , linestr , message;

StringTokenizer tokenizer = new StringTokenizer(line, ”:”);
if (line.startsWith(”fortcom: 7)) {
try {

fortcom = tokenizer.nextToken();

severitystr = tokenizer.nextToken().trim();

filestr = tokenizer.nextToken(”,”).substring(2).trim();
linestr = tokenizer.nextToken(”:”).substring(2).trim ();

message = tokenizer.nextToken(”\r\n”).substring(2).trim();

int severity = (severitystr.equals(”Error”)
? IMarkerGenerator.SEVERITY_ERROR_RESOURCE
: IMarkerGenerator. SEVERITY_WARNING);
int lineno = Integer.parselnt(linestr .substring (5));
IFile file = mgr.findFilePath(filestr);

mgr.generateMarker(file, lineno, message, severity, null);
¥
catch (Throwable x) {;}

return false;

}
}

Essentially, we (1) try to tokenize the error message, (2)
map the filename to an IFile in the workspace, and then
(3) call generateMarker to add a marker which will display
in the editor and Problems view.

New error parsers can be added to the CDT by extending
the ErrorParser extension point in its Core plug-in as
follows.

<extension id="IntelFortranErrorParser"

name="Photran Error Parser for Intel Fortran 8.1"
point="org.eclipse.cdt.core.ErrorParser">

<errorparser class="org.photran.IntelFortranErrorParser" />
</extension>

3.8 Managed Build System Integeration

One final aspect of language integration remains to be
considered. On some projects, users prefer not to maintain
their own makefiles; they would rather have a makefile
be automatically generated and automatically updated as
source files are added to and removed from their project.

The CDT provides managed make projects for this pur-
pose. The Managed Build System (MBS) is responsible for
maintaining makefiles in these projects, tracking dependen-
cies and updating the makefile as the project changes.

We will not discuss the details of MBS integration in
detail; this is already done very thoroughly in the Managed
Build System FExtensibility Document, which is available
from the “Reference Documentation” link on the CDT home

page [1].

4. EIGHTBOL: A PROOF OF CONCEPT

To illustrate how quickly a new language can be integrated
into the CDT, we used the technique described here to build
an IDE for a toy language called Eightbol. Moreover, we
have reworked the creation of this IDE as a tutorial, which
can typically be completed in less than an hour.

Eightbol is a trivial compiled language with an XML-like
syntax.®> (A sample program exploiting all of Eightbol’s

3XML syntax was chosen so that Eclipse’s sample XML editor could

<?xml version="1.0"7>
<program>
<section name="Sections are just for code readability">
<print string="We believe that Eightbol’s lack of" />
<print string="Turing-completeness is overshadowed by" />
<print string="its fashionable XML-based syntax and" />
<print string="Eclipse-based IDE." />
</section>
</program>

Figure 4: Sample Eightbol program

language features is shown in Figure 4.) An gcc-based front
end for Eightbol is available, which allows it to be compiled
in a makefile and debugged with gdb.

The Eightbol IDE tutorial uses Eclipse’s sample XML
editor as a starting point and generally follows the discussion
in the previous section. The editor is configured with a
content type and associated with the filename extension
“8bl.” An IAdditionallLanguage is created and fitted with
a model builder based on SAX (thanks to Eightbol’s XML-
based syntax). Finally, the CDT Outline is tied into the
editor, at which point the IDE is complete, and CVS
support, debugging, and error parsing can all be illustrated.
Due to space constraints, the Eightbol tutorial cannot be
reproduced here; however, the Eightbol compiler, IDE, and
tutorial are available from the Eightbol Web site [3].

S. FUTURE WORK

Currently, the described user interface changes and the
AdditionalLanguages extension point do not exist in the
official release of the CDT. However, Photran 3.0 [5] in-
cludes a copy of CDT with these modifications. We are
actively working with the CDT committers to integrate
these changes into the CDT proper.

The CDT changes described here represent a significant
step toward multi-language support. However, they are not
complete. For example, the current changes offer no means
of integrating refactoring support, and integration with the
C/C** indexer has not been investigated at length.

The ultimate goal is to provide a compiled language IDE
framework. To fully realize this, all languages (including C
and Ct*) should be implemented via an extension point,
effectively separating the current CDT into a language-
independent framework and a C/C*+ plug-in.

As these changes take place, we can expect the CDT
(and the API for adding additional languages) to undergo
significant changes. The version discussed here is prelimi-
nary; however, it is still extremely useful. Photran 3.0 is
built entirely as described, and was done so in a matter
of weeks. The aforementioned user interface changes and
Additionallanguages extension point provide an effective
way to build IDEs for compiled languages in surprisingly
little time.

6. REFERENCES

[1] Eclipse C/C++ Development Tools
http://www.eclipse.org/cdt/

[2] D’Anjou, J., S. Fairbrother, D. Kehn, J. Kellerman,
and P. McCarthy. The Java Developer’s Guide to
Eclipse, 2nd edition. Addison-Wesley, 2005.

[3] The Eightbol Project. http://www.eightbol.org/

[4] Gamma, E., R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Object-Oriented
Software. Addison-Wesley, 1995.

[5] Photran, an Eclipse Tool for Fortran Developement
http://www.photran.org/

be used in the tutorial without modification of its syntax highlighting
code. Under other circumstances, we would have preferred a good
syntax instead.

