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Abstract

Parsers in modern integrated development environments (IDEs) for general-

purpose languages are virtually all of the ad hoc, recursive descent variety. While

such parsers have many disadvantages when compared to machine-generated

LALR(1) parsers, they have two winning qualities: They are not restricted to

any finite amount of lookahead, and in an IDE, they can re-parse small segments

of a file as they change rather than re-parsing the entire file.

Theoretically, both of these capabilities can be achieved through variations

on traditional LR parsing techniques. Schell’s Generalized Piecewise LR

(GPLR) parsing algorithm provides a particularly powerful method for allowing

unbounded lookahead, and Celentano’s approach to incremental LR parsing

provides a simple and easily implementable technique to avoid re-parsing an

entire file as changes are made.

In this thesis, we prove that Celentano’s technique can be applied to

GPLR parsers, despite their use of unbounded lookahead; furthermore, this

does not require a change to either algorithm. This result is prefaced by

intuitive developments of the LR and GPLR parsing algorithms and Celentano’s

construction. We conclude by proposing a method for constructing compact

GPLR parsers from LALR(1) machines and identifying future directions for

research in incremental, noncanonical parsing.
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1
Introduction

Parsing is often touted as one of the great successes of computer science.1

The problem is beautifully mathematical, the solutions are provably correct,

and the results are intensely practical. The automatic generation of parsers

from grammars is a rare case where specification is simpler than direct

implementation and, by many measures, produces superior results.

Parsing has been studied almost exhaustively in the literature. Researchers

have parsed everything from arithmetic expressions to natural language, on

every computer from the DEC VAX to Dell PCs to Crays, reading input from left

to right and right to left, usually once but sometimes twice or more, constructing

syntax trees from top to bottom, bottom to top, all at once or in pieces.

This makes it especially ironic that the parsers in today’s most advanced

compilers and language tools are almost all ad hoc, recursive descent parsers that

disregard almost the entire lot of post-1960s research. While parser generators

such as yacc have made (theoretically superior) LALR(1) parsers practically

viable, very few general-purpose programming languages have a syntax that

can be easily formalized as an LALR(1) grammar; parser writers find it simpler

to deal with the eccentricities of these languages operationally rather than by

finagling a grammar which will mollify the parser generator.

The problem is that the grammars in many modern programming language

specifications are not LALR(1) and are not easily made LALR(1). There are

two reasons. First, some language features are not context-free, despite the fact

that they are specified in a context-free grammar. In Fortran 2003, for example,

f(6) can be either an array access or a function call, depending on how f was

declared. Since function calls and array accesses can occur in the same contexts,

there is an ambiguity in the specification grammar. Secondly, the remaining

problems—those not manifested as ambiguities—are due to the fact that, while

LALR(1) parsers have infinite left context, they only have a single token of right

context (lookahead). In the first edition of the Java Language Specification [15],

the authors dedicate an entire chapter to producing an LALR(1) grammar for

the Java language, elaborating on the pecularities of the specification grammar

1Actually, the term computer science was not coined until 1961 [22], several years after
the earliest parsing and compilation research.
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that make it non-LALR(1) and how these are resolved; every problem is due in

part to limited right context.

Returning to the original point, despite the fact that generated parsers can

guarantee correctness and efficiency, programmers often resort to ad hoc parsing

techniques because it is difficult to make an LALR(1) grammar for the language

they want to parse. When the difficulties are due to the fact that some language

features are not context-free, the ad hoc approach is obviously the right choice.2

However, when the difficulties are due to the limited-lookahead restriction of

LALR(1) parsers (as was the case with Java), reverting to ad hoc techniques

seems a bit extreme; it would be preferable to simply remove this lookahead

restriction in the parser generator.

There are a number of techniques for allowing infinite right context while

producing a deterministic parse. But are they worth implementing, or are they

just theoretical toys? Of course, it depends on the specific technique, but let

us look at why LALR(1) became the algorithm of choice for generated parsers

during the 1970s and 1980s. First, the class of LALR(1) grammars is relatively

large (perhaps not large enough, but large nonetheless). Second, LALR(1)

parsers are typically quite small. Third, they can parse in a single left-to-

right scan of the input. It should not be surprising that infinite-right-context

parsers tend to be larger and slower than LALR(1) parsers. Twenty or thirty

years ago, they would have been considered prohibitively so. However, memory

requirements are almost negligible now, when a gigabyte of memory costs little

more than a tank of gasoline. And the algorithms under consideration are all

sub-quadratic; on a multi-gigahertz machine, this should hardly be considered

“too slow.” More specific details will be given later, but the point is this:

Although these algorithms may have been deemed impractical when they were

developed, the reasoning is no longer valid, and their practicality should be

reconsidered.

Ad hoc, recursive descent parsers have another advantage besides their

ability to handle bizarre language features. Due to the way they are coded, it is

easy to (re)parse a single function or a single statement, not necessarily an entire

program. While this is virtually useless in a compiler, it is extremely useful in

modern integrated development environments, where editors, search tools, and

other components are more syntax-aware than ever before. This mechanism is

stereotypically used as an ad hoc approach to incremental parsing, or updating

the syntax tree of a program by re-parsing only parts that have changed rather

than the entire program.

At present, the ability to parse incrementally is useful, but there is not

2Some might argue that context-sensitive grammars are the right choice, should a context-
sensitive parser generator become realistic for implementation. Inasmuch as a grammar is
a specification of parser behavior, neither ad hoc code nor a context-sensitive grammar will
look anything like the actual (written) language specification, so the preference of one over the
other is debatable and dependent upon the specific feature in question and the masochistic
tendencies of the implementer.
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enough evidence to call it mandatory. However, a cursory glance at the

sophisticated, real-time analyses built into modern interactive development

tools—and the plethora of work in that area—makes it very likely that

incremental parsing will become a necessity in the future, if it is not considered

so already.

There is a fairly efficient algorithm for incremental LR parsing due to

Celentano [4] which is perfectly applicable to generated LALR(1) parsers.

However, until now, no method for incremental parsing has been considered for

deterministic parsing algorithms that use infinite right context. If incremental

parsing will never be needed—in a typical compiler, perhaps—this is not a

problem. But as parsers are finding their ways into more and more interactive

tools, the inability to parse incrementally could legitimately be a reason to

discount these techniques.

Fortunately, it is not. In this thesis, we will look at one LR-based parsing

algorithm which uses infinite right context, Schell’s Generalized Piecewise LR

(GPLR) method, and show that GPLR parsers can be made incremental using

Celentano’s method with no modification to either algorithm. In addition to

proving this formally, we will look at why this is the case, and how it might

apply to similar parsing algorithms.

In Chapter 2, we will review shift-reduce and LR parsing. The GPLR

parsing algorithm will be described in Chapter 3. In Chapter 4, we will

describe Celentano’s method for incremental LR parsing and its application

to GPLR and other algorithms. Formalisms leading to a proof of correctness

for the incremental GPLR parsing algorithm will be introduced as needed; the

corresponding section titles will be marked with an asterisk and may be skipped

if the reader simply wants an intuitive description of the algorithm.

Background and Notation

We assume that the reader is familiar with alphabets, languages, automata,

context-free grammars, derivations, and the general concept of parsing as

presented in a typical treatise on the theory of computation, such as [16].

LR parsing will be reviewed, but some prior familiarity with the topic is

helpful, perhaps at the level of Aho, Sethi, and Ullman’s Compilers: Principles,

Techniques, and Tools [2].

Unless stated otherwise, we assume that we are parsing an underlying

context-free grammar G = (VN , VT , P, S) where VN denotes a finite, non-

empty set of nonterminal symbols, VT denotes a finite set of terminal symbols,

VN ∩ VT = ∅, P ⊆ VN × (VN ∪ VT )∗ denotes a finite set of productions, and

S ∈ VN is the start symbol of the grammar. We will let V denote VN ∪ VT .

The distinguished terminal symbol $ represents the end of input string. We will

often use a list of productions as a shorthand notation for a grammar whose

start symbol is the nonterminal on the left-hand side of the first production

3



and whose terminal and nonterminal symbols can be inferred from the list of

productions.

Capital letters toward the beginning of the alphabet (A, B, C) denote

nonterminals, while the same letters in lowercase (a, b, c) denote terminals.

Capital letters toward the end of the alphabet (X , Y , Z) denote symbols in

V = VN ∪ VT , while lowercase x, y, and z denote strings in V ∗
T . Lower-case

greek letters toward the beginning of the alphabet (α, β, γ) denote strings in

V ∗.

The symbol ε denotes the empty string. The expression an denotes the string

consisting of n repetitions of the symbol a (so a3 = aaa and a0 = ε).

4



2
Foundations of GPLR Parsing

In this chapter, we will describe shift-reduce parsing in its most general form,

then describe how LR parsing improves upon the shift-reduce algorithm. In

the next chapter, we will describe Schell’s Generalized Piecewise LR (GPLR)

parsing algorithm, which further extends the LR parsing algorithm to parse a

larger class of languages.

2.1 Shift-Reduce Parsing

A parse of a string w in a grammar G is simply a sequence of productions applied

in a derivation of w; a parser, then, is a program which receives a string as input

and produces a parse of that string in a particular grammar (or produces an

error if that string is not in the language of that grammar) [25, p. 160].

One of the simplest parsers is a nondeterministic stack machine which

behaves as follows. This is called the shift-reduce parser for G [25, p. 164].

• It starts with an empty stack and w as its input. It will output a parse,

i.e., a sequence of productions; initially, this sequence is empty.

• It pushes the symbols of w onto its stack one at a time.

• If, at any point, the sequence of symbols on the top of its stack matches

the right-hand side of one of the productions of G, it pops those

symbols, replacing them with the nonterminal on the left-hand side of

that production. That production is added to the output parse.

• The parse accepts if, and only if, it reaches a state where the only symbol

on its stack is S, and no input remains.

The action of pushing an input symbol onto its stack is called shifting; that

of popping the stack and replacing the symbols with the left-hand side of a

production is called reducing by that production.

For example, suppose we have the balanced parentheses grammar

S → (S) | () | SS

5



and the input (())(). The shift-reduce parser behaves as follows (symbols that

are about to be popped because they match the right-hand side of a production

are underlined; the nonterminal replacing them is displayed in boldface on the

following line):

Stack Remaining Input Production

(())()

( ())()

(( ))()

(() )() S →()

(S )()

(S) () S →(S)

S ()

S( )

S() S →()

SS S →SS

S

The shift-reduce parser for a grammar is conceptually simple, but it is not

used in practice because it is nondeterministic. Suppose we had the alternative

balanced parentheses grammar

S → (S) | ε | SS;

then the shift-reduce parser could reduce ε to S at any time (since it can always

find ε on the top of its stack); theoretically, the machine can even reduce ε

several times in a row. In general, it cannot decide whether its next action is to

shift the next input symbol or reduce by some production. It may even be able

to reduce by several different productions at any given point.

The LR parsing method is a more sophisticated variation on the shift-reduce

parsing technique which eliminates this nondeterminism. Conceptually, the

parser still shifts symbols onto its stack and reduces them, but it is augmented

with a state machine which controls its action. This state machine, coupled with

the ability to “look ahead” at a finite prefix of the remaining input, guarantees

that, at any point, the decision to shift or reduce by a particular production is

uniquely determined.

2.2 LR Parsing

2.2.1 LR(0) Parsing

The most fundamental difference between the basic shift-reduce parsing algo-

rithm and LR parsing is the addition of a finite state machine. While the basic

shift-reduce parser decides what action to take (shift or reduce by a particular

6



production) based solely on the parser’s stack contents, in the LR parsing

algorithm, this action is determined by the state of this machine. The state

changes (1) as input symbols are read and (2) when a reduction is performed.

The exact details will be described later; for now, let us describe the construction

of this finite state machine.

For the time being, we will use the grammar

A → aA | B

B → bb

for the language a∗bb as a running example (where A is the start symbol of the

grammar).

Recall that the goal of a parser is to produce a derivation of the input

string from the start symbol (in this case, A). When a parser starts, then, it is

expecting to see a string that is derivable from the start symbol (A). Since the

two A-productions in our grammar are A → aA and A → B, this means the

first thing it should expect to see is either an aA or a B. Let us use

[A → · aA]

[A → ·B]

to indicate this.

If we next were to shift the symbol a, we would use [A → a ·A] to indicate

this new situation; intuitively, the dot indicates where the parser is in matching

the right-hand side of a production. Equivalently, then, the symbol after the

dot tells us what the parser is expecting to see next.

These productions with a dot in the middle or on either end are called LR(0)

items, and each state in our state machine will be a set of these items. (We will

usually just list the items, as above, rather than using the usual mathematical

notation for sets.) So if we look at all of the symbols after the dots in every

item in our state, we should have a complete list of what symbols the parser

should expect to see next in its input.

When the symbol after the dot is a terminal, like a, the meaning is obvious:

The next symbol in the input should be exactly that symbol. But what does

it means for a parser to “expect” a nonterminal like B, since there are only

terminals in the input string? Effectively, it means the parser should expect to

see anything derivable from B. This means the parser may also see bb at this

point (since B → bb), so [B → · bb] should also be included in the state (i.e.,

the set of items describing the state of our parser). So the complete initial state

of our parser is

[A → · aA]

[A → ·B]

[B → · bb].

7



In general, any time a nonterminal appears after the dot, we should look at

each production for that nonterminal and include an item in the state for that

production with a dot on the left-hand side. A → ·B means we are expecting

to see something derivable from B, and B → · bb tells exactly what things

derivable from B look like. This process of finding items with nonterminals

after the dots and adding new items with their productions is called closing the

state.

After we close a state, we have a complete list of every possible next input

symbol: Just look at all of the terminals appearing after the dot in an item.

Let’s call the initial state of our parser—the one we constructed above—q0. The

terminals after the dots in q0 are a and b, so the next input symbol should be

either of these.

Suppose we are in state q0 and the next input symbol is a. The symbol a

should be shifted onto the stack, and our state machine should move to a new

state. But what items are in this new state?

The answer is quite simple: All of the items in q0 that had an a after the

dot, except now the dot will be moved forward one position since we already

matched the a. Since we didn’t see a B or a b, none of the other items apply,

so they will not be included in this new state. This just leaves [A → a ·A]. As

before, we need to close this state to get a complete picture of what terminals

to expect, so this new state should also include [A → · aA], [A → ·B], and

[B → · bb].

We will call this state the goto state from q0 on a. The goto state from q0

on b is constructed similarly. We can also construct goto states on nonterminal

symbols appearing after the dots in the items of a state, e.g., the goto state

from q0 on B; we will explain the utility of these later. If we construct the

initial state, and its goto states, and the goto states’ goto states, etc., until

we cannot construct any more states, we have a finite state machine called the

LR(0) characteristic finite state machine, or cfsm. The cfsm for our example

grammar is shown in Figure 2.1.1

As we shift symbols, moving from state to state, the dots in our items keep

moving to the right, so eventually we will reach a state where one of these items

has a dot on the right end. Let’s take [B → bb · ] as an example. This means

that we have seen bb—something derivable from B—in its entirety, so we can

safely reduce it to B. (Thus, we often refer to items with dots on the right end

as reduce items and others as shift items.)

But after we reduce bb to B, the state containing [B → bb · ] no longer

describes the state of our parser. What state should it be in?

Recall that [A → ·B] (or any item with B after the dot) meant that we were

expecting to see something derivable from B, and [B → bb · ] (or any B-reduce

1Notice that q1 loops back to itself on a. The items in the goto state from q1 on a are
exactly the items of q1, and there should never be two states in the machine with identical
sets of items. This is also why q0 and q1 lead to the same goto state on b (q2).
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[A → · aA]
[A → ·B]
[B → · bb]

q0

[A → a ·A]
[A → · aA]
[A → ·B]
[B → · bb]

q1

[B → b · b]
q2

[A → B · ]
q3

[A → aA · ]
q4

[B → bb · ]
q5

a

b

B

a

b

B

A

b

Figure 2.1: LR(0) cfsm for the non-augmented grammar A → aA | B; B → bb

item) means we just saw something derivable from B. So we want return to

whatever state we were in just before we got sidetracked processing the input

derivable from B.2

This is where the stack can be useful to us. Stacks have traditionally been

used as a data structure to remember what a machine was doing before it got

sidetracked doing something else.3 So in addition to storing shifted symbols on

the stack, we also need to store what state the parser was in after the symbol

was shifted. We will write these symbol-state pairs as X
q
, where X is the symbol

and q is the state. At the beginning of the parse, we will place −
q0

on the stack

so that we have a record of our initial state.4

Suppose we are parsing the string aaabb in the example grammar. Following

the cfsm in Figure 2.1, our state machine will move through the states

q0, q1, q1, q1, q2, q5, shifting the five symbols and their corresponding states onto

the stack before reaching q5 with the reduce item [B → bb · ]. At that point, it

will have
−

q0

a

q1

a

q1

a

q1

b

q2

b

q5

2In our simple example, we know exactly which state this was, but in general, there may
be several such states, and we need to know which one to jump back to.

As an aside, one can entertain the possibility of combining all of these states into a single
new state and avoid using the stack altogether, but the net result would be an unnecessarily
complex parser limited to regular languages.

3Activation records on the stack of an executing process are a well-known example.
4The procedure for reducing looks at the top stack symbol after the terminals being reduced

have been popped; if we did not include this, we would be left with an empty stack, which we
would have to treat as a special case.
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on its stack. To reduce bb to B, it must pop the last two pairs off the stack. This

leaves a
q1

on top of the stack, which means that just before it started processing

the input derivable from B, it had just shifted a and moved to state q1. So

we should not be surprised to find that q1 includes the item [A → ·B]. Now

that we have seen the entire input derivable from b and popped those pairs off

the stack, the state machine will move to state q3—the goto state from q1 on

B—and we will push B
q3

onto the stack. Intuitively, we are doing the same thing

we did when we shifted a terminal: We are pushing a symbol-state pair onto the

stack and going to the appropriate goto state. The only difference is that this

time we are doing it for a string of symbols—the entire string derivable from

B—rather than just a single symbol. Effectively, we “matched” a nonterminal

in the input string, just as we “match” a terminal in the input string when we

shift it.

The only problem that remains is that we do not know when to accept the

input. Finishing out the parse of aaabb in the example grammar, it would seem

that if we have no input remaining, we are in state q0, and only −
q0

is on our

stack, we can accept. But that is exactly the configuration of our parser when

it is started, which means it can accept the empty string, which is clearly not

derivable in the sample grammar!5

To remedy this, we never construct LR parsers from “ordinary” grammars.

Instead, we construct an augmented grammar by adding a new production S ′ →

A, where A is the original start symbol, and make S ′ the new start symbol for

the grammar. (S′ should be some new nonterminal not already in the grammar,

of course.) When we construct the cfsm, then, the initial state will be the closure

of {[S′ → ·A]}, and the machine will accept when it is about to reduce A to S ′

(i.e., when it reaches the state containing [S ′ → A · ]).

Fortunately, for our example, the cfsm for the augmented grammar is nearly

identical to the one shown earlier for the non-augmented grammar. It is shown in

Figure 2.2: The start state q0 is the same as before but also includes [S ′ → ·A].

Also, the cfsm contains a new state q6 consisting of the sole item [S ′ → A · ].

With this new cfsm, the complete parse of aaabb is as follows.

5This is one example. The general problem we are trying to prevent is a shift/accept
conflict: The parser cannot tell when it should shift the next symbol and when it should
accept the input.
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[S′ → ·A]
[A → · aA]
[A → ·B]
[B → · bb]

q0

[S′ → A · ]
q6

[A → a ·A]
[A → · aA]
[A → ·B]
[B → · bb]

q1

[B → b · b]
q2

[A → B · ]
q3

[A → aA · ]
q4

[B → bb · ]
q5

A

a

b

B

a

b

B

A

b

Figure 2.2: LR(0) cfsm for the augmented grammar S → A; A → aA |B; B → bb

Stack Remaining Input Reduce Item

−
q0

aaabb

−
q0

a
q1

aabb

−
q0

a
q1

a
q1

abb

−
q0

a
q1

a
q1

a
q1

bb

−
q0

a
q1

a
q1

a
q1

b
q2

b

−
q0

a
q1

a
q1

a
q1

b
q2

b
q5

[B → bb · ]

−
q0

a
q1

a
q1

a
q1

B
q3

[A → B · ]

−
q0

a
q1

a
q1

a
q1

A
q4

[A → aA · ]

−
q0

a
q1

a
q1

A
q4

[A → aA · ]

−
q0

a
q1

A

q4

[A → aA · ]

−
q0

A

q4

[S′ → A · ]

(accept)
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2.2.2 Determinism

Although the last section completely describes the operation of the simplest

LR parsing algorithm, we glossed over one important issue. The biggest

improvement of LR parsers over basic shift-reduce parsers was supposed to be

determinism, the unique selection of a shift or reduce action. Certainly, the

LR(0) cfsm helps to eliminate some nondeterminism: For example, a parser will

not reduce by an ε-production unless there is an item like C → · in its current

state, and it will not try to shift the next symbol if there are no shift items for

that symbol in its current state. But what happens if there is both a shift item

and a reduce item in the same state? Or what if there are two different reduce

items?

The simple answer is, we cannot decide what to do, and so we cannot create

an LR(0) parser for that grammar. The problematic state is said to have an

irresolvable shift/reduce or reduce/reduce conflict.

The longer answer is that we should try to construct a more complicated

parser and see if that will eliminate the problem. Conflicts can never be

prevented entirely in deterministic parsing algorithm: There are context-free

languages which are not deterministic, and some languages are inherently

ambiguous (i.e., every grammar for that language is ambiguous). But it is

not difficult to accept more than the LR(0) grammars.

2.2.3 Adding Lookahead: LR(k) Parsing

LR(0) parsers, described above, are actually the simplest form of a more general

technique known as LR(k) parsing, where k is some natural number (usually 1,

rarely 2, and almost never larger). In an LR(k) parser, rather than reducing

any time we end up in a state with a reduce item, the items in the states will

be augmented with k-symbol lookahead strings. A reduce action will only be

performed when the next k symbols of the remaining input match the lookahead

string in the reduce item. For example, the item [C → x · , a] has the one-symbol

lookahead string a. So if that item and [D → x · , b] appear in the same state,

we can still choose a single reduce action, since reduction by C → x should

occur only when the lookahead is a, and reduction by D → x when it is b.

Conceptually, this is simple; the construction is slightly more complex.

We already mentioned that we will add lookahead components to reduce

items in our cfsm; in fact, we will add lookahead components to all of the items

in the cfsm. The lookahead component is useless in shift items, but it will make

the construction easier.

Recall that an LR(0) item [E → α · β] in a state intuitively indicates that

the parser has seen (something derivable from) α and it is expecting to see

(something derivable from) β next. The LR(k) item [E → α · β, w] intuitively

indicates that the parser has seen (something derivable from) α, it is expecting

to see (something derivable from) β next, and after that, it is expecting to see
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w. That is, after the reduction to E is performed in some successor state, the

next k input symbols will be w.

Let us use the distinguished symbol $ to represent “end of input.” Recall

that, in the LR(0) construction, the initial state was the closure of the state

containing the single item [S ′ → · S]. In an LR(k) parser, the parser should

expect to see something derivable from S followed immediately by the end of

input, so the initial state will be the closure of the state containing the single

LR(k) item [S′ → · S, $k].6

The notion of closure for LR(k) items is slightly different than for LR(0)

items, of course, since lookahead components are involved. The basic idea of

finding the nonterminals after the dots and including their productions is the

same, but what should the lookaheads be?

Let us recall why we compute closures in the first place. If we have some

item of the form [E → α · Fβ, w]—that is, an item with a nonterminal (F ) after

the dot—then the parser is in a state where it should expect to see anything

derivable from F , so we include items for each F -production in the grammar. If

the parser does see something derivable from F (i.e., it uses one of these items

to eventually reduce something to F ), after it reduces, it will return to this

state and move forward to the state containing [E → αF · β, w], where it will

eventually see β and then w. So the first few symbols following the symbols

derived from F will be the first few symbols of something derivable from βw.

Therefore, we compute LR(k) closures as follows. Each item with a

nonterminal after the dot has the form

[E → α · Fβ, w],

where E and F are nonterminals, α and β are strings in V ∗, and w is a string

in V k
T , where k is the lookahead length. We find all of the productions for F in

the grammar; call them F → α1, F → α2, . . ., F → αn. Then we should ensure

that the state contains each of the items

[F → · α1, Firstk(βw)],

[F → · α2, Firstk(βw)],

. . .,

[F → · αn, Firstk(βw)].

where Firstk(α)
def
= {x | α

lm
=⇒

∗

xβ and |x| = k, or α ⇒∗ x and |x| < k}.

When we compute goto states, lookaheads are simply carried over unchanged

from the original state. For example, suppose a state contains the item [C →

a · bc, de]. Then the goto state on b will contain [C → ab · c, de]; the parser still

expects to see de after it reduces abc to C, just like it did in the original state,

so the lookahead component does not change.

6Requiring such an endmarker limits a parser to recognizing only the strict deterministic
context-free languages.
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2.2.4 Summary of the LR(k) Construction

We have described the entire LR(k) construction, but it is useful to summarize

it in a more precise and compact form. In the next chapter, we will expand on

this in describing the GPLR construction.

The LR(k) cfsm is constructed as follows.

1. The initial state is ClosureLR({[S′ → · S, $k]}), where

2. Given a set I of LR(k) items, the ClosureLR(I) is defined recursively as

the smallest set satisfying

ClosureLR(I) = I ∪ {[B → · γ, Firstk(βw)] |

[A → α ·Bβ, w] ∈ ClosureLR(I) and

B → γ ∈ P}.

3. In a given state q, if there is an item [A → α ·Xβ, w], then there is also a

state q′ = GotoLR(q, X), and there is a transition from q to q′ on symbol

X .

4. The function GotoLR is defined to be the smallest set satisfying

GotoLR(q, X) = ClosureLR( { [A → αX · β, w] |

[A → α ·Xβ, w] ∈ q}).

5. The accepting state is the (unique) state containing [S ′ → S · , $k].

The parser is driven by two functions, ActionLR and GotoLR. The GotoLR

function was described above; ActionLR is defined as follows. (If ActionLR is

multiply defined for any input, then the underlying grammar is not LR(k) and

the construction fails.) Given a cfsm state q and a lookahead string au ∈ V k
T ,

ActionLR(q, au)
def
=























shift and go to GotoLR(q, a) if ∃[A → α · aβ, w] ∈ q

reduce by A → α if ∃[A → α · , au] ∈ q

accept if [S′ → S · , $k] ∈ q

error otherwise.
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3
The GPLR Parsing Algorithm

We will now build on the informal, operational description of LR parsing in the

previous chapter to present the Generalized Piecewise LR parsing algorithm.

Originally presented in [23, p. 101–114], GPLR is much more sophisticated

than the basic LR algorithm but is also much more powerful: The GPLR(1)

grammars properly include the LR(1) grammars, and they also include many

languages which are not LR(k) for any k [23, p. 111].1

This power is due to the fact that GPLR is a noncanonical parsing

technique. Informally, this means that, where an LR(k) parser would encounter

a shift/reduce or reduce/reduce conflict, a GPLR parser will temporarily ignore

the problem and make some reductions on the remaining input. Eventually, it

will return to the site of the conflict and make a decision, facilitated by its new

knowledge of what nonterminal(s) the remaining input will reduce to. A more

formal definition is that a canonical parsing algorithm (e.g., LR(k)) is one that

will only reduce handles,2 while a noncanonical parsing method is one that may

also reduce phrases which are not handles.

GPLR is a two-stack parsing algorithm. The first stack serves the same

function as the stack in an ordinary LR parser; we will simply refer to it as

“the stack.” The second stack, which we will call the “input stack,” initially

contains the input string, with the first symbol on the top of the stack and the

endmarker ($) at the bottom. Symbols will be popped off the input stack, just

as an ordinary LR parser reads its input from left to right. However, a GPLR

parser will also push symbols back onto the input stack, at which point they

will serve as the next input symbol.

1However, there are some LR(k) grammars, k ≥ 2, which are not GPLR(1) [23, p. 111].
2Given a context-free grammar (VN , VT , P, S) and a rightmost derivation

S
rm
=⇒

∗

αAw
rm
=⇒αβw

rm
=⇒xw,

we say that β is a handle of the right-sentential form αβw. In English, “a handle of a right-
sentential form is any substring which is the right side of some production and which can be
replaced by the left side of that production so that the resulting string is also a right-sentential
form” [3, p. 179].
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3.1 Shift-Reduce-Cancel-Continue Parsing

While an ordinary LR parser has four actions—shift, reduce, accept, and error—

a GPLR parser can also cancel or continue. Continuation is the action which

allows the parser to temporarily ignore a conflict; cancellation is used in

returning to the site where the conflict occurred.

3.1.1 Continuation

A GPLR parser continues when there are at least two different (shift and/or

reduce) actions it could have taken. To continue, it places a special marker on

the stack (denoted ⊥) and changes the current state to a continuation state.

Like goto states, continuation states are constructed to follow from an existing

state on a particular input symbol, so we can speak of, say, the continuation

state from q0 on B. After entering a continuation state, the parser proceeds

to make reductions on the remaining input, but it only makes reductions that

would have been made no matter which of the possible prior actions was taken.

This is ensured by two means.

First, the stack marker (⊥) is treated as the bottom of the stack; the parser

is not allowed to look at any of the symbols below ⊥ until the ⊥ symbol is

explicitly removed from the stack by a cancel action.3 This will be described

further in the discussion of cancellation, but for now, suffice it to say that this

will prevent the continuation site from accidentally being “absorbed” into a

large reduction.

Second, the continuation state is constructed to guarantee that only

conservative reductions are made. Suppose one shift and two reduce actions

were possible in the original state on a particular lookahead symbol. Then there

are several shift items that should be carried over to the continuation state; if it

made either reduction, there are several states it could have moved to, and the

items from these states are carried over as well. In other words, the continuation

state is constructed to include all of the items that would be valid no matter

which of the original actions was taken.4 As symbols are shifted, the goto states

from this continuation state will be followed, and if a state is ever reached where

only one reduce action is possible—i.e., there is only a single reduce item—then

we can be assured that, no matter which of the original actions was taken, the

parser would have ended up in a state with only this single reduce item.

3The intuition is that we are “spawning a new parser” to handle the remaining input. As
we will see, this “new parser” will eventually pass a cancellation symbol and a nonterminal
back to the original parser so that it can decide which of the possible actions was appropriate.

4The logic is similar to that for the removal of ε-productions in a finite automaton: The
continuation state is really the union of several other states, and its goto successors are the
unions of the original states’ goto successors, so these states are really tracking the progress
of several paths through the original automaton. The difference between this construction
and the ε-removal construction is that we reduce only when we would reduce in all of the
original states, while an automaton with ε-productions removed will accept when it would
have accepted along any of the original paths.
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3.1.2 Cancellation

Suppose the stack of a GPLR parser contains the following symbols (from

bottom to top)

a ⊥ b c

and it has just reached a state with a single reduce item allowing it to reduce

abc to some nonterminal, say F . In other words, after it shifted the a, it was

not sure whether to reduce a to something or shift the b, so it continued. But

now that it has seen the b and c following it, it knows for sure that shifting b

was correct. Unfortunately, since it is not allowed to look at symbols below ⊥,

the parser cannot reduce abc, as it can only see bc.

The solution is something called an insufficient stack depth reduction. The

parser will pop as many symbols as possible (b and c), remove the ⊥ marker,

and place a cancellation symbol at the front of the input stream, followed by

the nonterminal it attempted to reduce to (F ). Cancellation symbols indicate

(1) which production the parser wants to reduce by, and (2) what suffix of that

production’s right-hand side was actually visible on the stack. In this case, we

wanted to reduce by F → abc, but only bc was visible on the stack, so the

cancellation symbol will be 〈F → a · bc〉.

Now that the ⊥ marker and the stack contents above it are gone, the parser

will return to the state is was in before it continued (the state on top of the

stack), but it will use this cancellation symbol as the lookahead token. It will

recognize that there is, in fact, an a on top of its stack, so it will cancel a, i.e.,

pop a (and the corresponding state) off the stack and remove the cancellation

symbol from the input stream.

It is also possible to cancel with insufficient stack depth. In this case, if

the parser needs to cancel 〈A → αβ · γ〉 but only β is visible on the stack, the

cancellation symbol is popped from the input stack, the symbols of β and the

⊥ symbol below them are popped from the parser stack, and a new cancellation

symbol 〈A → α · βγ〉 is pushed onto the input stack. As with an insufficient

stack depth reduction, the parser’s current state is set to the new state on top

of the stack, and this new cancellation symbol serves as the next input symbol.

3.1.3 Cancellation Symbols and Nonterminals as Input

Recall that, in an insufficient stack depth reduction, both the cancellation

symbol and the reduced nonterminal are placed at the beginning of the input

stream. The presence of these new types of symbols in the input stream causes

some complication.

Consider a grammar with the productions A → a and B → Ab, and suppose

for illustrative purposes that a parser has a⊥b on its stack. It wants to reduce

by B → Ab, and, seeing b on the stack, it pops it and places 〈B → A · b〉 B at

the beginning of the input stream. Then the parser cannot cancel, since A is

17



not at the top of its stack. It must first reduce a to A; then it can cancel.

Similarly, when the nonterminal B appears at the front of the input stream,

if the current state contains an item with a B after the dot, it can simply shift

the nonterminal B onto its stack and go to the appropriate goto state, as it did

for shifting terminal symbols. But if the current state does not contain an item

with a B after the dot, it will need to reduce first.

To summarize, when the lookahead symbol is a cancellation symbol, the

parser can either cancel or reduce. If it is a nonterminal, it can either shift or

reduce.

3.2 The GPLR CFSM

Armed with a general understanding of how a GPLR parser should work, we

will now focus on the characteristic finite state machine (cfsm) which drives it.

Just as the states of an LR(k) cfsm were sets of LR(k) items, the states of a

GPLR cfsm will be sets of GPLR items.

3.2.1 GPLR Items and Cancellation Lookahead

A GPLR item consists of two component LR(0) items and is written, e.g.,

[A → aB · , C → D · e].

The second component item cannot have a dot at the right or left end. In some

cases, there will not be a second component, e.g.,

[A → aB · , ].

The first component item has the exact same meaning as in the LR(0) cfsm; it

is called the core of the GPLR item. We refer to the GPLR item as a shift item

or reduce item if its core is an LR(0) shift item or reduce item, respectively. The

second component is the cancellation lookahead ; it serves a function similar to

the lookahead component in LR(k) items. Specifically, if a reduce item such as

[A → aB · , C → D · e] appears in a state, then if the parser reduces aB to A

(and possibly makes a few more reductions immediately after that), it may be

possible for it to end up in a state where it can cancel 〈C → D · e〉—i.e., a state

containing an item of the form [C → D · e, (something)]. As in the LR(0) cfsm,

if a state contains an item with the core [C → D · e], then we can be assured

that D will appear on top of the stack, since such an item will only appear if the

machine started with [C → ·De] and then recognized a D. So, consequently, a

parser can cancel anything that appears as a core in its current state.

The purpose of GPLR lookahead, then, is to determine whether a reduction

may lead to a state where a particular cancellation is possible. This will be

used to determine the parser’s action when a cancellation symbol appears in
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the input stream. So, for example, if [A → aB · , C → D · e] appears in the

parser’s current state, and the cancellation symbol 〈C → D · e〉 appears next in

the input, then it should reduce by A → aB, since it is possible (though not

guaranteed) that it will end up in a state where cancellation by 〈C → D · e〉 is

feasible.

3.2.2 Constructing the Machine

The construction of the GPLR cfsm is very similar to the construction of the

LR(k) cfsm, adjusted appropriately for cancellation lookahead.

The initial state of the GPLR cfsm is the closure of {[S ′ → · S$, ]}; the final

state is the (unique) state containing [S ′ → S · $, ].

Before describing how closures are computed, we will explain how goto states

are computed. As with the LR(k) construction, to compute the goto state

from a (closed) state q on a terminal or nonterminal X , all of the items in

q with an X after the dot in the core component are incorporated into the

new state with the dot moved forward one position, and lookaheads are simply

carried over unchanged from the original state. To see why, suppose a state

contains the item [C → a · bc, D → e · F ]. Then the goto state on b will contain

[C → ab · c, D → e · F ]. In the original state, the lookahead D → e · F meant

that, after it becomes possible to reduce abc to C, doing so (and possibly making

further reductions) could put the parser in a state containing the core D → e · F .

This statement is just as true in the new (goto) state as it was in the original

state: It does not depend on the position of the dot in the core.

The closure of a set of GPLR items is computed as follows. Each item with

a nonterminal after the dot has the form

[A → α ·Bβ, C → γ · δ].

We find all of the productions for B in the grammar; call them B → α1, B → α2,

. . ., B → αn. We have two cases to consider.

If β derives at least one string other than ε, we should ensure that the state

contains each of the items

[B → · α1, A → αB · β],

[B → · α2, A → αB · β],

. . .,

[B → · αn, A → αB · β].

Intuitively, the item [A → α ·Bβ, C → γ · δ] indicates that the parser is in a

state where it needs to recognize a B, but it will get sidetracked doing this (it

will have to go through several more states and eventually reduce something to

B), but after it does so, it will return to this state and jump forward to the goto

state on B. Then it may be possible to cancel 〈A → αB · β〉 in that state.
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If β ⇒∗ ε (or β = ε), we should ensure that the state contains each of the

items

[B → · α1, C → γ · δ],

[B → · α2, C → γ · δ],

. . .,

[B → · αn, C → γ · δ].

As before, the parser will get sidetracked recognizing a B but will then return

to this state and jump forward to the goto state on B. The goto state on B will

contain the item

[A → αB · β, C → γ · δ].

In the event that ε is reduced to β and the item

[A → αBβ · , C → γ · δ]

becomes valid, the parser should be prepared to cancel 〈C → γ · δ〉 without

consuming any further input.

When it is possible to continue in a state q (we will describe how to determine

this momentarily) on a particular symbol, we will also need to compute a

continuation state from q on that symbol. The symbol will be either a terminal

or nonterminal; call it X . The continuation state from q on X should contain

the closure of all of the following items.

• All of the items in q that have X after the dot in the core should be

included; i.e., if [A → α ·Xβ, B → γ · δ] is in q, then it is also included in

the continuation state from q on X . Since there is an X after the dot, it

is possible to shift X ; by including these items and closing the state, we

are retaining the ability to shift X after we continue.

• We should determine all of the reduce items in q that have an X

after the dot in the lookahead item. Each of these items has the form

[A → αY · , B → γ ·Xδ] for some A, α, Y, B, γ, and δ. For each of these

items, we should find every production whose right-hand side includes a

nonterminal which derives a string ending in B; that is, we should find

every production C → ζDη (for some C, ζ, D, η) such that D ⇒∗ θB for

some θ.5 Then the continuation state should include [B → γ ·Xδ, C →

ζD · η]. Effectively, this is including every possible item that could appear

if we had reduced αXβ to A in q (and then moved to the goto state on

A). Since B → γ · δ was the lookahead in the original item, through some

sequence of reductions, we could end up in a state with that core. We

then need to find every lookahead that could be paired with that core,

so we form all of the lookaheads which have a dot immediately after a B

(or something that derives something ending in B)—all of the lookaheads

5Remember that B ⇒∗ B when computing this.
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corresponding to an core that could appear immediately after a B was

recognized.

After a continuation state has been added to the cfsm, goto states from that

continuation state will need to be added, and goto states from those goto states,

etc. Some of these states may already exist in the cfsm, i.e., there may already

be a state consisting of the desired items.

The initial state, its goto states, the goto states from those goto states, etc.

are called unprimed states. All of the other states—continuation states and

their goto states that were not already in the cfsm—are called primed states.

3.2.3 The GPLR Action Function

The GPLR Action function is straightforward: Shift and reduce items induce

shift and reduce actions, as expected. The contexts in which a parser may cancel

or continue have already been described and should not be surprising.

Let q be a state in the cfsm (i.e., a set of GPLR items) and χ an input

symbol (terminal, nonterminal, or cancellation symbol).

• If χ is a terminal or nonterminal and q contains an item of the form

[A → α · χβ, B → γ · δ], then a parser in state q with input χ should shift

χ (note that we must have χ ∈ V ).

• If q contains an item of the form [A → α · , B → γ · δ], then a parser in

state q with input χ should reduce by A → α if one of the following holds:

– δ ⇒∗ χι for some ι ∈ V ∗ (note that this requires χ ∈ V ), or

– χ = 〈B → γ · δ〉.

• If χ = 〈A → α · β〉 and q contains a item of the form [A → α · β, B → γ · δ]

(so α, β 6= ε), then a parser in state q with input χ = 〈A → α · β〉 should

cancel 〈A → α · β〉.

• If more than one of the above applies, the parser should continue, with

one exception. If both a cancel and a reduce action are indicated for an

unprimed state, the conflict is unresolvable, and parser construction fails.

3.2.4 Summary of the GPLR CFSM Construction

We will now summarize the GPLR cfsm construction and describe when to

construct continuation states. The cfsm is constructed as follows.

1. The initial state is constructed as the closure of [S ′ → · S$, ].

2. In a given state q, if there is an item [A → α ·Xβ, B → γ · δ], then the

goto state from q on X is constructed, and there is a transition from q to

this state on symbol X .
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3. As each state q is constructed, if a continue action is indicated for any

symbol χ, then a continuation state from q on χ is constructed.

4. The previous two steps are repeated until no new states can be added to

the machine.

5. The accepting state is the (unique) state containing [S ′ → S · $, ].

3.3 Formalizing the GPLR Construction*

To facilitate the proof of correctness in the following chapter, we will now give a

formal specification of the GPLR construction. GPLR parsers will be modeled

as two-stack pushdown automata; we will begin with a description of such

automata, and then describe the construction of the cfsm, and end with with

the automaton’s semantics. The reader uninterested in the formal specification

and proof of correctness may skip this and all subsequent sections whose titles

are marked with asterisks.

3.3.1 Two-Stack Pushdown Automata

A GPLR recognizer, which we will formally define later, is modeled as a

two-stack pushdown automaton. To simplify the presentation, we will use a

nonstandard definition of such an automaton which allows the two stacks to

have different stack alphabets.

Definition 1 A two-stack pushdown automaton is an octuple

(Q, Σ, Γ1, Γ2, ∆, q0, τ0, F )

where

• Q is a finite, non-empty set of states;

• Σ is a finite set of input symbols;

• Γ1 is a finite, non-empty set of symbols that can appear on the first stack;

• Γ2 is a finite set of symbols that can appear on the second stack, where

Σ ⊆ Γ2;

• q0 ∈ Q is the initial state;

• τ0 ∈ Γ∗
1 is the initial contents of the first stack;

• F ⊆ Q is the set of final states; and

• ∆, the transition relation, is a finite subset of

(Q × Γ∗
1 × Γ∗

2) × (Q × Γ∗
1 × Γ∗

2).
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The transition relation will usually be given by an explicit listing of rules of the

form

(q, α, β) −→ (q′, α′, β′).

Such a rule intuitively means that an automaton in state q with α on top of its

first stack and β on top of its second stack will make a transition to state q′,

replacing α with α′ on the first stack and β with β′ on the second stack. This

will be defined more precisely below.

Definition 2 A configuration or snapshot of a two-stack pushdown automaton

M = (Q, Σ, Γ1, Γ2, ∆, q0, τ0, F ) is an ordered triple, written

α q© β

where

• α ∈ Γ∗
1 is the contents of the first stack, written with the topmost symbol

appearing on the right;

• q ∈ Q is the current state; and

• β ∈ Γ∗
2 is the contents of the second stack, written with the topmost symbol

appearing on the left.

When the current state is not important, it will be written �.

Definition 3 Let M = (Q, Σ, Γ1, Γ2, ∆, q0, τ0, F ) be a two-stack pushdown

automaton. The ` relation (often read “moves to” or “derives”) is defined on

configurations of M according to the following. Let αβ q© γδ be a configuration

of M . Then

αβ q© γδ `M αβ′
q′© γ′δ.

iff ∆ contains a rule

(q, β, γ) −→ (q′, β′, γ′)

for some q′ ∈ Q, β′ ∈ Γ∗
1, and γ′ ∈ Γ∗

2. The subscript M will be omitted when

it is clear from context.

Definition 4 The action of a two-stack pushdown automaton M on input w ∈

Σ∗ is any sequence6 s of configurations that satisfies

• s0 = τ0 q0©w and

• si ` si+1 for every i.

When only one such sequence exists for every w, the automaton is said to be

deterministic; otherwise, it is nondeterministic.

6Given a set S (in our case, the set of configurations of M), a sequence over s is a function
mapping the natural numbers {0, 1, . . . } to elements of S. The terms of the sequence are the
elements s(0), s(1), . . . , which will will denote by s0, s1, . . . .
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3.3.2 Constructions on Sets of GPLR Items

In the forthcoming formalisms, α, β, γ, δ, ζ, η, and θ denote strings in V ∗;

A, B, C, and D denote nonterminals; X and Y denote symbols in V = VN ∪VT .

We will use IGPLR to refer to the set of all GPLR items for a grammar, that

is, the set consisting of every item appearing in every state of the GPLR cfsm

(this is formalized in Definition 15). Free variables are existentially quantified

unless stated otherwise. So, for example,

f(I, X)
def
= {[A → α ·Xβ, B → γ · δ] ∈ I}

abbreviates the more precise but cumbersome

f(I, X)
def
= {[A → α ·Xβ, B → γ · δ] | [A → α ·Xβ, B → γ · δ] ∈ I,

for some α, β, γ, δ ∈ V ∗, A, B ∈ VN}.

Cancellation Symbols

Definition 5 Given an augmented grammar G = (VN , VT , P, S), the set VC of

cancellation symbols for G is

VC
def
= {〈A → α · β〉 | A → αβ ∈ P, |α| > 0, and |β| > 0}.

Subset Selectors

We begin by defining some notation: SI,χ, RI,χ, and CI,χ will be used to refer to

the shift, reduce, and cancellation items, respectively, in a state I on lookahead

χ.

Definition 6 Given a set I ⊆ IGPLR of GPLR items and a symbol χ ∈ V ∪VC ,

the GPLR shift items in I for lookahead χ are precisely the elements of the set

SI,χ
def
=







{[A → α · χβ, B → γ · δ] ∈ I} if χ ∈ VN ∪ VT

∅ if χ ∈ VC .

Definition 7 Given a set I ⊆ IGPLR of GPLR items and a symbol χ ∈ V ∪VC ,

the GPLR reduce items in I for lookahead χ are precisely the elements of the

set

RI,χ
def
=







{[A → α · , B → γ · δ] ∈ I | δ ⇒∗ χw, ∃w ∈ V ∗
T } if χ ∈ VN ∪ VT

{[A → α · , B → γ · δ] ∈ I} if χ = 〈B → γ · δ〉.

Definition 8 Given a set I ⊆ IGPLR of GPLR items and a symbol χ ∈ V ∪VC ,

the GPLR cancellation items in I for lookahead χ are precisely the elements of
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the set

CI,χ
def
=







∅ if χ ∈ VN ∪ VT

{[A → α · β, B → γ · δ] ∈ I} if χ = 〈A → α · β〉.

When considering the cancellation items in I , often we are not concerned

with the lookahead components. Thus, we define a function Core which extracts

the first component of a GPLR item.

Definition 9 Given a GPLR item, the core of the item is the LR(0) item

Core([A → α · β, B → γ · δ])
def
= [A → α · β].

As usual, we can extend this definition to operate on a set I ⊆ IGPLR of GPLR

items:

Core(I)
def
= {Core(i) | i ∈ I}.

Successor Item Sets

We will now formalize the notions of closure, goto successor, and continuation

successor.

Definition 10 Given a set I ⊆ IGPLR of GPLR items for a grammar G =

(VN , VT , P, S), the GPLR closure of I is defined as the smallest set satisfying

ClosureGPLR(I)
def
= I

∪ {[C → · ζ, A → αC · β] |

[A → α ·Cβ, B → γ · δ] ∈ ClosureGPLR(I)

and C → ζ ∈ P, where β ⇒∗ w for some w ∈ V +
T }

∪ {[C → · ζ, B → γ · δ] |

[A → α ·Cβ, B → γ · δ] ∈ ClosureGPLR(I)

and C → ζ ∈ P, where β ⇒∗ ε}.

Definition 11 Given a set I ⊆ IGPLR of GPLR items and a symbol X ∈ V ,

the goto successor on lookahead X is given by

GotoGPLR(I)
def
= ClosureGPLR({[A → αX · β, B → γ · δ] |

[A → α ·Xβ, B → γ · δ] ∈ I}).

Definition 12 Given a set I ⊆ IGPLR of GPLR items for a grammar G =

(VN , VT , P, S) and a symbol X ∈ V , the continuation successor on lookahead X
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is given by

ContGPLR(I)
def
= {[B → γ ·Xδ, C → ζ · η] |

[B → γ ·Xδ, C → ζ · η] ∈ I}

∪ {[B → γ · Y δ, C → ζZ · η] |

[A → αX · , B → γ · Y δ] ∈ I,

C → ζZ · η ∈ P, and Z ⇒∗ θB}.

Definition 13 Given a set I ⊆ IGPLR of GPLR items and a symbol χ ∈ V ∪VC ,

the GPLR action function is defined such that

ActionGPLR(I, χ)
def
=



































































































































































shift and go to GotoGPLR(I, χ) if |SI,χ| ≥ 1 and |RI,χ| = 0

(note that this requires χ ∈ V )

reduce by A → α if |RI,χ| = 1, |SI,χ| = 0, and |CI,χ| = 0,

where [A → α, B → γ · δ] ∈ RI,χ

cancel 〈A → α · β〉 if |RI,χ| = 0 and |Core(CI,χ)| = 1

where [A → α · β] ∈ Core(CI,χ)

continue in ContGPLR(I, χ) if any of the following hold:

|SI,χ| ≥ 1 and |RI,χ| ≥ 1

|RI,χ| ≥ 1 and |Core(CI,χ)| ≥ 1

|RI,χ| ≥ 2

|Core(CI,χ)| ≥ 2

accept if [S′ → S · $, ] ∈ I

error otherwise.

3.3.3 The GPLR Recognizer

Definition 14 Given an augmented grammar G = (VN , VT , P, S′), the canoni-

cal collection of sets of GPLR items, CGPLR, is defined inductively as the smallest

set satisfying the following.

• ClosureGPLR({[S′ → · S$, ]}) is in CGPLR.

• If I ∈ CGPLR, then for every X ∈ V , GotoGPLR(I, X) is in CGPLR.

• If I ∈ CGPLR and ActionGPLR(I, χ) = continue for some χ ∈ V ∪ VC , then

ContGPLR(I, X) is in CGPLR.
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Definition 15 Given the canonical collection CGPLR of sets of GPLR items for

a grammar, the set IGPLR of all GPLR items in a grammar is defined such that

IGPLR

def
=

⋃

I∈CGPLR

I.

Theorem 1 CGPLR contains a finite number of sets, and each set in CGPLR

contains a finite number of GPLR items.

Proof This follows from the fact that there are a finite number of productions

in the grammar, and each production has finite length, so the number of distinct

GPLR items is finite. Consequently, the number of sets of items is also finite. �

Definition 16 Each set of items in CGPLR is classified as either primed or

unprimed according to the following.

• ClosureGPLR({[S′ → · S$, ]}) is unprimed.

• If I ∈ CGPLR is unprimed, then, for every X ∈ V , GotoGPLR(I, X) is

unprimed.

• All other sets are primed.

In other words, primed sets are continuation successors and goto successors that

are constructed solely due to continuation.

Definition 17 The GPLR recognizer for an augmented grammar G′ =

(VN , VT , P, S′) is the two-stack pushdown automaton such that

• Q = CGPLR;

• Σ = T ;

• Γ1 = (V ∪ VC ∪ {⊥}) × Q, where ⊥ is a distinguished symbol (we will

usually write these pairs as X
q

rather than (X, q));

• Γ2 = V ∪ VC ;

• q0 = ClosureGPLR({[S′ → · S$, ]});

• τ0 = (⊥, q0);

• F = { q ∈ Q | ActionGPLR(q) = accept }; and

• ∆ =
⋃

q∈Q,χ∈(V ∪VC ) ∆q,χ. The definition of ∆q,χ is displayed in

Figure 3.1.

Theorem 2 GPLR recognizers are deterministic.

Proof A simple induction on sequences of configurations. �
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∆q,χ
def
=































































































































{

(q, ε, χ) −→
(

q′, χ
q′

, ε
)}

if ActionGPLR(q, χ) = shift and go to q′ (shift)

{(

q, Y
q′

X1

q1

X2

q2
. . . Xn

qn
, χ

)

−→
(

q′′, Y
q′

A
q′′

, χ
) ∣

∣

∣
Y ∈ V ∪ VC ; q′, q1, . . . , qn ∈ Q; q′′ = GotoGPLR(q′, A)

}

(reduce)

∪
{(

q, Y
q′

⊥
q′′

Xi

qi
. . . Xn

qn
, χ

)

−→
(

q′, Y
q′

, 〈A → X1 . . . Xi−1 ·Xi . . .Xn〉A χ
) ∣

∣

∣
1 < i < n, Y ∈ V ∪ VC ; q′, q′′, q1, . . . , qn ∈ Q

}

(reduce-c)

if ActionGPLR(q, χ) = reduce by A → X1X2 . . . Xn

{(

q, Y
q′

X1

q1

X2

q2
. . . Xn

qn
, χ

)

−→
(

q′, Y
q′

, ε
) ∣

∣

∣
Y ∈ V ∪ VC ; q′, q1, . . . , qn ∈ Q

}

(cancel)

∪
{(

q, Y
q′

⊥
q′′

Xi

qi
. . . Xn

qn
, χ

)

−→
(

q′, Y
q′

, 〈A → X1 . . . Xi−1 ·Xi . . .Xnβ〉
) ∣

∣

∣
1 < i < n, Y ∈ V ∪ VC ; q′, q′′, q1, . . . , qn ∈ Q

}

(cancel-c)

if χ = 〈A → X1 . . .Xn · β〉 and ActionGPLR(q, χ) = cancel

{(

q, Y
q
, χ

)

−→
(

q′, Y
q

⊥
q′

, χ
) ∣

∣

∣
Y ∈ V ∪ VC ; q′ = ContGPLR(q, χ)

}

(continue)

if ActionGPLR(q, χ) = continue.

Figure 3.1: Definition of ∆q,χ (see Definition 17)
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4
Adding Incrementality

The parsing algorithms described thus far start at the beginning of the input,

process it from left to right, and then terminate after reaching the end of input.

Sometimes this is not desirable. For example, when a document is being edited

in a “smart” syntax-highlighting editor, it may be desirable to re-parse the

document frequently, perhaps even on every keystroke. However, re-parsing the

entire document (and reconstructing an entire syntax tree) is time-consuming.

In particular, when only a small portion of the document has been changed,

it is desirable to re-parse only the portion that has changed and modify the

appropriate part of the syntax tree, leaving the unaffected parts alone.

That is precisely the goal of incremental parsing. Augusto Celentano’s

“Incremental LR Parsers” [4] is the traditional reference on the subject’s

application to LR parsers, although his work was improved on by Agrawal and

Detro [1] and is largely based on previous work by Ghezzi and Mandrioli [11, 12].

In this chapter, we will review Celentano’s algorithm for incremental LR(1)

parsing and, more importantly, illustrate and prove formally that it applies to

GPLR parsers without modification.

4.1 Incremental LR(1) Parsing:

Celentano’s Algorithm

4.1.1 Theory

An LR(1) parser consists of just three things: (1) a stack, (2) a state machine,

and (3) an input stream. Thus, we can give a complete “snapshot” of an LR(1)

parser at any point during its parse by describing the entire contents of its

stack, its current state, and the remaining input. Such a snapshot is called a

configuration, and the entire sequence of configurations exhibited by a successful

parse is called a parse sequence.

We will write configurations as α q©w, where α is the stack contents, q is the

state in the cfsm, and w is the remaining input. So, for example, every LR(1)
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parse sequence has the form

−

q0
q0©w, . . . ,

S

qf

qf© ε.

Celentano’s algorithm relies on an important observation: At any point

during a parse, the next action of an LR(1) parser is completely described

by (1) the state of its cfsm, (2) the contents of its stack, and (3) only the first

symbol of the remaining input. In other words, if an LR parser in state q has α

on its stack and a is the next input symbol, it will always make exactly the same

move, so the next state and stack contents will also be the same. By induction,

that statement applies to strings as well: If a parser is in state q with α on

its stack, its state and stack contents after consuming the input a1a2 . . . an are

uniquely determined.

Once this is realized, the actual algorithm is not hard to understand.

Suppose we have already parsed an input string (call it z); that is, we know

a parse sequence for z. Now, part of that input has changed, so we have a new

input (call it z′) which we want to parse. We can divide z and z′ into three

parts: The substring preceding the changed region, the substring that changed,

and the substring following the changed region. More formally, z = xwy and

z′ = xw′y for some x, w, w′, y ∈ V ∗
T .

Now, let us consider how to parse z′. There is no reason to re-parse x since

it appears unchanged at the beginning of the input. A parser will always start

in the initial state with −
q0

on its stack; as discussed above, after consuming

x, its state and stack contents will be uniquely determined. So all the parser’s

configurations will be the same through the point where it shifts the last symbol

of x. (Actually, since a configuration includes the entire remaining input, we

need to substitute w′ for w in constructing the new parse sequence, but since

the first symbol of the remaining input is a symbol in x, the state and stack

contents will be the same as before.)

Now, the parser should parse the symbols of w′ as an ordinary LR(1) parser,

since they are different from w.

As soon as the last symbol of w is shifted, the parser will change its course

of action. It is now in familiar territory again, since all of the remaining input

is the same. However, since it has just finished processing the changed region,

its state and stack contents are likely not the same as the were during the

previous parse. So it should continue to behave like a normal LR(1) parser as it

proceeds through the symbols of y until it reaches a known configuration, i.e., a

configuration where the state, stack contents, and remaining input are exactly

the same as they were at some point during the previous parse. Once such a

configuration is found, all of the remaining configurations can be copied directly

from the previous parse.

That is the intuition; Celentano’s much more precise description is as follows.
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Algorithm 1 Incremental GPLR Parsing [4, Algorithm 1, p. 312–313]

Input: Two strings z = xwy and z′ = xw′y

A parse sequence Π = S0S1 . . . Sn for z

Output: A parse sequence Π′ = S′
0S

′
1 . . . S′

m for z′

Let x = x1x2 . . . x|x|, y = y1y2 . . . y|y|, w = w1w2 . . . w|w|; let t denote a generic

suffix of z. Let p and r be two indices such that

Sp = T0 . . . Tp � wy$,

Sp−1 = T0 . . . Tp−1 � x|x|wy$,

Sr = T0 . . . Tr � y$, and

Sr−1 =







T0 . . . Tr−1 � w|w|y$ if w 6= ε

T0 . . . Tr−1 � x|x|y$ if w = ε.

Initially Π′ is the empty sequence.

1. Let Si = αi q©βiti; for all i, 0 ≤ i ≤ p, append to Π′ the configurations

S′
i = αi q©βit

′
i where t′ is obtained from t by replacing w with w′.

2. Append to Π′ the configurations S′
p+i such that S′

p+i−1 ` S′
p+i 0 < i ≤ k,

where k is the smallest value such that S ′
p+k = α�y$. (If w′ = ε this step

is not executed; i.e., k = 0.)

3. Let S′
s be the last configuration appended to Π′. If there exists an index q,

0 ≤ q ≤ n − r such that S ′
s = Sn−q, go to step 5; otherwise go to step 4.

4. Append to Π′ a new configuration obtained by performing a move on z ′,

and go back to step 3.

5. Let S′
s+j = Sn−q+j for all j, 0 < j ≤ q. Let m = s + q.

4.1.2 Implementation

If one were to literally implement Celentano’s algorithm as described above—by

dumping the entire stack, state, and remaining input at every step—the results

would be disappointing, to say the least. Perhaps the most ingenious part of

Celentano’s paper is not the algorithm itself but the effective implementation

he suggests.

The Stack Tree

Rather than using a typical implementation of a stack, the parser’s stack is

replaced with a stack tree. A stack tree consists of a tree and a pointer p to a

node of the tree. Since the stack of an LR parser always has at least one element

on it (the initial state), we can assume that, at the beginning of the parse, the

stack tree has a single node (labeled with the initial state), and p points to this

node. The stack tree implements the usual interface of a stack as follows.
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a

b

c d p

e

Figure 4.1: A sample stack tree

• Push(x). If the node pointed to by p already has a child node labeled x,

change p to point at this child. If not, create a new child node labeled x,

and point p at this child.

• Top. Return the label of the node pointed at by p.

• Pop. Point p at the parent of the node to which it is currently pointing.

Note that nodes are never removed from the tree; furthermore, given a

pointer to a node in the stack tree, the “entire contents of the stack” can

be determined by tracing the nodes back to the root. As an example, after

executing the instructions

push(a) push(b) push(c) pop push(c) pop push(d) push(e) pop,

the stack tree will appear as shown in Figure 4.1 and, as expected, the sequence

of nodes from the root to p spells abd.

Using a stack tree, then, provides an efficient way to store the entire contents

of the stack at any point in a parse: We can simply note which node p was

pointing at.

Input Labeling

Recall that, to store a complete parser configuration, we must store the stack

contents, the current state, and the remaining input; our ultimate reasons for

doing this are (1) to restart the parser at the beginning of the changed region

and (2) to detect when the parser has reached a known configuration. The

remainder of the implementation relies on three important observations.

1. There is no need to explicitly store the current state, since the current

state of the parser is always the state on top of the stack.

2. It suffices to store only configurations immediately after a symbol is

shifted. Between any two such configurations, there may be zero
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or more reductions. The only step of Algorithm 1 affected by this

is step 3, where the parser attempts to find a known configuration.

If the known configuration was one of these “reduce configurations”

which is not stored, then of course the parser will not find a matching

configuration, so it will proceed to perform reductions until it reaches its

next “shift configuration,” which will match. These reductions would not

be performed if every configuration were stored, so extra work is being

done, but correctness is not affected. Furthermore, it significantly reduces

the number of configurations we must store: It is equal to the number of

input symbols, since each symbol is shifted exactly once. That leads to

the following:

3. If only shift configurations are stored, then we can associate with each

input symbol a pointer to the stack contents for the configuration after

which that symbol was shifted. By so labeling each symbol in the

input string, we effectively have a complete parser configuration: The

remaining input is obvious, and the associated stack tree pointer gives

the corresponding stack contents, which also gives the current state of the

parser.

Summary of Incremental LR(1) Parsing Implementation

The efficient implementation of Celentano’s algorithm, then, involves replacing

the parser’s stack with a stack tree and labeling each input symbol with a pointer

to the stack tree node immediately after that symbol is shifted. Restarting the

parser at the beginning of the changed region amounts to resetting the stack tree

pointer p and the current state, and detecting a known configuration amounts

to a pointer comparison against p. The complete algorithm using a stack tree

is as follows.

1. During the first parse, the parser proceeds as usual, but immediately after

the parser shifts each symbol of the input, that symbol is labeled with a

pointer to the stack tree node to which p points.

2. Suppose symbols i through j of the input have changed (where i and j

denote positive integers). We will let pk denote the pointer to the stack

tree node associated with input symbol k. An incremental parse proceeds

as follows.

• Retain the labels (i.e., the stack tree pointers) associated with all of

the unchanged symbols; the changed symbols are unlabeled.

• Point parser’s stack tree pointer p at the same node as pi.

• Set the parser’s current state to the state now on top of the parser’s

stack.

• Set the remaining input to symbol i through the end of input.
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• Parse symbols i through j as in item 1 above, labeling each symbol

with the stack tree nodes for future incremental parses.

• For each symbol k > j through the end of input, proceed as follows.

After symbol k is shifted, compare the stack tree pointer p to pk (the

node labeling symbol k). If p = pk, report success and terminate

the parse; a known configuration has been reached. If p 6= pk, then

relabel symbol k by setting pk equal to p, and continue parsing (i.e.,

reduce as necessary, and repeat this step when the next symbol is

shifted).

Note that the number of stack tree nodes is bounded by the length of the

input, and only a single pointer is associated with each input symbol, so the

space overhead is relatively modest: It is linear in the length of the input.

Furthermore, the speed of the initial parse is virtually the same as for a non-

incremental parser, since the only overhead is associating a stack tree node

pointer with each input symbol.

4.2 Incremental GPLR Parsing

4.2.1 Overview

A GPLR parser consists of three things: (1) a parse stack, (2) a state machine,

and (3) an input stack. As we did with LR parsers, we can give a complete

“snapshot” of a GPLR parser at any point during its parse by describing

the entire contents of its parse stack, its current state, and the contents of

the input stack. Configurations of GPLR parsers will be written similarly to

configurations of LR(1) parsers, and parse sequences defined similarly.

Recall that Celentano’s algorithm relies heavily on the observation that at

any point during a parse, the next action of an LR(1) parser is completely

described by (1) the state of its cfsm, (2) the contents of its stack, and (3) only

the first symbol of the remaining input. This is not true for GPLR parsers.

In fact, the biggest advantage of GPLR parsers—the property that gives them

their parsing power—is that they can use an unlimited amount of lookahead to

resolve conflicts that would occur in a normal LR parser.1 There is a similar

statement which is true of GPLR parsers, however. Each input terminal is only

consumed once, i.e., only nonterminals and cancellation symbols are ever pushed

back onto the input stack. So at any point during a parse, a GPLR parser’s

next action is completely described by (1) the state of its cfsm, (2) the contents

of its parse stack, and (3) the remaining input through the first terminal symbol.

This means that, as far as implementation is concerned, Celentano’s

algorithm can be implemented on a GPLR parser exactly as it would be for

1Technically, this is not quite accurate. They still use a single lookahead symbol, but since
this symbol may be a nonterminal or cancellation symbol, the number of terminals symbols
processed before committing to a particular reduction is unlimited.
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a regular LR(1) parser. We can use a stack tree to record the contents of

the parser stack throughout the parse (including all ⊥ symbols, of course) and

associate a stack tree node with each input terminal immediately before it is

shifted. Since a terminal will only be shifted when it is on top of the stack—

when there are no cancellation symbols or nonterminals preceding it—the above

statement assures us that any reductions, cancellations, and continuations that

should follow the shift action will occur.

We will now prove this formally. A full example of incremental GPLR parsing

follows the proof of correctness.

4.2.2 Proof of Correctness*

We will begin by defining an incremental GPLR parse sequence as the sequence

of configurations generated by applying Celentano’s algorithm to a GPLR

parse. This is simply a formalization of the incremental parsing algorithm

described informally above. We will then give two lemmas which lead to a

proof of Theorem 3, the GPLR analog of the theorem Celentano proves in [4]

to demonstrate the correctness of his algorithm.

Definition 18 Incremental GPLR Parse Sequence

Input: Two strings z = xwy and z′ = xw′y

A parse sequence Π = S0S1 . . . Sn for z

Output: A parse sequence Π′ = S′
0S

′
1 . . . S′

m for z′

Let x = x1x2 . . . x|x|, y = y1y2 . . . y|y|, w = w1w2 . . . w|w|; let t denote a generic

suffix of z. Let p and r be two indices such that

Sp = T0 . . . Tp � wy$,

Sp−1 = T0 . . . Tp−1 � x|x|wy$,

Sr = T0 . . . Tr � y$, and

Sr−1 =







T0 . . . Tr−1 � w|w|y$ if w 6= ε

T0 . . . Tr−1 � x|x|y$ if w = ε.

Let k be the smallest integer such that p ≤ k and S ′
k = α � y$. Let q′ be the

smallest integer greater than k such that there exists q with r ≤ q ≤ n and

S′
q′ = Sq.

S′
i

def
=























αi q©βit
′
i, where Si = αi q© βiti and

t′i is t with w′ substituted for w if 0 ≤ i < p (pre)

` (S′
i−1) if p ≤ i ≤ k < q′ (diff)

Sq+(i−q′) if i ≥ q′ (post)

Lemma 1 The contents of the second stack in a GPLR recognizer is always of

the form αw, where α ∈ (VN ∪ VC)∗ and w ∈ V ∗
T . Furthermore, if α q©βw `M
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α′ q′©β′w′ (where β ∈ (V ∪ VC)∗), then w′ is a suffix of w. In other words,

terminals are never pushed back onto the second stack.

Proof The proof is a simple induction on sequences of configurations following

from the observation that, in each rule, the contents of the second stack is either

unmodified, the topmost symbol is popped, or a nonterminal and cancellation

symbol are pushed onto the stack. It proceeds as follows.

Base case. A sequence consisting of only a single configuration must contain

only the initial configuration of a GPLR parser,

⊥

q0
q0© z,

where z ∈ V ∗
T denotes the initial input string. Clearly, z is of the desired form.

The second statement (“Furthermore. . . ”) holds due to a false antecedent.

Inductive case. Suppose α q© γ `M α′ q′© γ′ where γ = βw for some β ∈

(VN ∪VC)∗ and w ∈ V ∗
T . We will show that γ′ = β′w′ for some β′ ∈ (VN ∪VC)∗

and w′ ∈ V ∗
T , where w′ is a suffix of w, by case analysis according to the

definition of ∆ in Definition 17.

• Suppose the move is due to (shift) or (cancel). Both of these rules are of

the form

(·, ·, χ) −→ (·, ·, ε)

where χ ∈ V ∪ VC . By the induction hypothesis, γ ∈ (VN ∪ VC)∗V ∗
T ; since

γ′ is γ with the first symbol removed, γ ′ ∈ (VN ∪VC)∗V ∗
T , and the portion

matching V ∗
T must be a suffix of the corresponding portion of γ.

• Suppose the move is due to (reduce) or (continue). Both of these rules are

of the form

(·, ·, χ) −→ (·, ·, χ),

and so the second stack is unaffected.

• Suppose the move is due to (reduce-c). Then γ ′ = χ′Aγ, where χ′ ∈ VC

and A ∈ VN . Since χ′A ∈ (VN ∪ VC)∗, γ ∈ (VN ∪ VC)∗ by the induction

hypothesis, and the terminal portion of γ is unaffected, the lemma holds.

• Suppose the move is due to (cancel-c). Then γ = βw = χβ2w, where

χ ∈ VC , β2 ∈ (VN ∪ VC)∗, and w ∈ V ∗
T ; and γ′ = χ′β2w, where χ′ ∈ VC .

Since χ′β2 ∈ (VN ∪ VC)∗, w ∈ V ∗
T , and w is a suffix of itself, the lemma

holds. �

Lemma 2 Given an arbitrary configuration α q©βaw of a GPLR recognizer,

where β, β′ ∈ (VN ∪ VC)∗ and a ∈ VT ,

α q©βaw `M α′
q′©β′w =⇒ α q©βav `M α′

q′©β′v for every v ∈ V ∗
T .
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Similarly,

α q©βaw `M α′
q′©β′aw =⇒ α q©βav `M α′

q′©β′av for every v ∈ V ∗
T .

In other words, each move of a GPLR parser is determined by at most one

unconsumed terminal from the original input string; the remainder of the input

plays no role in determining the next configuration.

Proof Observe that all six rules comprising the transition relation (function)

∆ in Definition 17 are contingent upon the pattern

(·, ·, χ)

being matched, where χ ∈ V ∪ VC . According to the definition of ∆, then, only

the first symbol of the second stack (χ) is used to determine which rule applies,

and Lemma 1 guarantees that terminals are only removed from the stack, never

pushed back onto it. Therefore, no terminals below the topmost terminal on

the second stack can ever be used to determine the next move of the parser,

and the lemma follows. �

Theorem 3 In Definition 18,

1. S′
0 is the initial configuration;

2. for 1 ≤ i ≤ m; S′
i−1 ` S′

i; and

3. S′
m = T0Tf � $.

Proof (We will use the expressions (pre), (diff), and (post) from Definition 18.)

To prove Part 1, we note that S0 = ⊥
q0

q0©xwy by Definition 17. Thus, (pre)

gives S′
0 = ⊥

q0
q0©xw′y, which is the initial configuration for the recognizer for z ′.

Part 2 is proved by induction on i. There are three cases, each of which will

be conducted by a separate induction on i.

• Case 1: 1 ≤ i < p. The arguments for the base and inductive cases are

similar. By Lemma 1 and the definition of p, the second stack in each

configuration Si must have the form βx̂wy where x̂ is a suffix of x. Since

Π is a valid parse sequence, Si−1 ` Si. Now |βx̂| ≥ 1 since i < p, and

from Lemma 2 we know that S ′
i−1 ` S′

i.

• Case 2: p ≤ i ≤ k < q′. The proof of this case is immediate due to (diff).

• Case 3: i ≥ q′. For the base case, suppose i = q′. Now q′ was chosen such

that ` (S′
q′−1) = Sq for some q, and Sq = Sq+(i−q′) = S′

i. Now suppose

i > q′ and S′
j−1 ` S′

j for all j < i. Since Π is a valid parse sequence,

Sq+((i−1)−q′) ` Sq+(i−q′), and therefore S′
i−1 ` S′

i.
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q0

q1

q2

q3

q5

q6

q7

q8

q9

q10

q11

q12

q4 q13 q14

A1

A

A2

a

S

x

a

B

b

a

y

(cont.
on a)

b

a

(cont. on a)

Figure 4.2: GPLR(1) cfsm for the example grammar

The proof of Part 3 is straightforward. Clearly, if the final configuration is

due to (post), it will be identical to the final configuration in Π. If the final

configuration S′
f is due to (pre) or (diff), then S ′

f−1 ` S′
f by Part 2, and S′

i

is not defined for any i > f , and thus S ′
f must be the halting configuration

T0Tf � $. �

4.2.3 An Example of Incremental GPLR Parsing

To illustrate incremental GPLR parsing, we will use the (somewhat contrived)

grammar

S → AB

A → A1x | A2y

A1 → A1a | a

A2 → A2a | a

B → Bb | b

for the (regular) language a+(x|y)b+. Notice, however, that the exact parse of

a+, which may be arbitrarily long, depends on whether x or y follows. Thus, we

cannot reduce any of the as until we have seen all of the as; since the number

of as is arbitrarily long, this grammar is not LR(k) for any k. The GPLR(1)

cfsm for this grammar is depicted in Figure 4.2; due to space considerations, the

complete list of items in each state and the corresponding actions are displayed

in the appendix. Primed states are shown in dotted circles.

The initial parse of aaaaxbbb is shown in Figure 4.3; the resulting stack tree

and input labels are shown in Figure 4.4. The symbol 〈∗〉 is used to denote
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〈A1 → A1 · a〉. As before, symbols that are about to be reduced are underlined,

and the resulting nonterminal and cancellation symbol (if applicable) are

displayed in boldface on the following line.

Now, given this parse of aaaaxbbb, suppose the middle axb is changed to

ybbb. We retain the labels for the portion of the input that is the same; that is,

the original input

1 2 3 4 5 6 7 8

• • • • • • • •

a a a a x b b b

is revised, yielding the new input

1 2 3 4 5 6 7 8 9

• • • • •

a a a y b b b b b.

Since symbols 1 through 3 are unchanged, the parser is restarted as follows. The

stack is reset according to pointer labeling symbol 3; according to Figure 4.4,

this will effectively place
−

q0

a

q5

⊥

q13

a

q14

⊥

q13

a

q14

on the stack. Then, the current state is reset to the state on top of the stack

(q14). The remaining input consists of symbol 4 (the start of the changed region)

through the end of input:

4 5 6 7 8 9

• •

y b b b b b.

The incremental parse proceeds as shown in Figure 4.5. We use 〈†〉 to denote

〈A2 → A2 · a〉; the unmodified bs which still have stack tree labels are denoted

ḃ. After shifting in step 17, the current stack tree node will be the same one

labeling the shifted b, and so the parser can accept the input.
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Step Parser Stack Input Stack Action

1. −

q0
aaaaxbbb Shift and go to q5

2. −

q0

a
q5

aaaxbbb Continue in q13

3. −

q0

a
q5

⊥

q13
aaaxbbb Shift and go to q14

4. −

q0

a
q5

⊥

q13

a
q14

aaxbbb Continue in q13

5. −

q0

a
q5

⊥

q13

a
q14

⊥

q13
aaxbbb Shift and go to q14

6. −

q0

a
q5

⊥

q13

a
q14

⊥

q13

a
q14

axbbb Continue in q13

7. −

q0

a
q5

⊥

q13

a
q14

⊥

q13

a
q14

⊥

q13
axbbb Shift and go to q14

8. −

q0

a
q5

⊥

q13

a
q14

⊥

q13

a
q14

⊥

q13

a
q14

xbbb Reduce by A1 → A1a

9. −

q0

a
q5

⊥

q13

a
q14

⊥

q13

a
q14

〈∗〉A1 xbbb Reduce by A1 → A1a

10. −

q0

a
q5

⊥

q13

a
q14

〈∗〉A1 〈∗〉 A1 xbbb Reduce by A1 → A1a

11. −

q0

a
q5

〈∗〉A1 〈∗〉A1 〈∗〉 A1 xbbb Reduce by A1 → a

12. −

q0

A1
q1

〈∗〉A1 〈∗〉A1 〈∗〉 A1 xbbb Cancel 〈A1 → A1 · a〉

13. −

q0
A1 〈∗〉A1 〈∗〉 A1 xbbb Shift A1

14. −

q0

A1
q1

〈∗〉A1 〈∗〉 A1 xbbb Cancel 〈A1 → A1 · a〉

15. −

q0
A1 〈∗〉 A1 xbbb Shift A1

16. −

q0

A1
q1

〈∗〉 A1 xbbb Cancel 〈A1 → A1 · a〉

17. −

q0
A1 xbbb Shift A1

18. −

q0

A1
q1

xbbb Shift x

19. −

q0

A1
q1

x
q6

bbb Reduce by A1 → A1x

20. −

q0

A1

q1

bbb Reduce by A → A1

21. −

q0

A

q2

bbb Shift b

22. −

q0

A
q2

b
q9

bb Reduce by B → b

23. −

q0

A
q2

B
q8

bb Shift b and go to q12

24. −

q0

A
q2

B
q8

b
q12

b Reduce by B → Bb

25. −

q0

A
q2

B

q8

b Shift b and go to q12

26. −

q0

A
q2

B
q8

b
q12

(end of input) Reduce by B → Bb

27. −

q0

A
q2

B
q8

(end of input) Reduce by S → AB

28. −

q0

S
q4

(end of input) Accept

Figure 4.3: Complete GPLR(1) parse of aaaaxbbb in the example grammar.
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−
q0

a
q5

⊥
q13

a
q14

⊥
q13

a
q14

⊥
q13

a
q14

A1

q1

x
q6

A
q2

b
q9

B
q8

b
q12

S
q4

a a a a x b b b

Figure 4.4: Stack tree and input labels for the parse of aaaaxbbb
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Step Parser Stack Input Stack Action

1. −

q0

a
q5

⊥

q13

a
q14

⊥

q13

a
q14

ybbbḃḃ Reduce by A2 → A2a

2. −

q0

a
q5

⊥

q13

a
q14

〈†〉 A2 ybbbḃḃ Reduce by A2 → A2a

3. −

q0

a
q5

〈†〉 A2 〈†〉 A2 ybbbḃḃ Reduce by A2 → a

4. −

q0

A2

q3

〈†〉 A2 〈†〉 A2 ybbbḃḃ Cancel 〈A2 → A2 · a〉

5. −

q0
A2 〈†〉 A2 ybbbḃḃ Shift A2

6. −

q0

A2
q3

〈†〉 A2 ybbbḃḃ Cancel 〈A2 → A2 · a〉

7. −

q0
A2 ybbbḃḃ Shift A2

8. −

q0

A2
q3

ybbbḃḃ Shift and go to q11

9. −

q0

A2
q3

y
q11

bbbḃḃ Reduce by A → A2y

10. −

q0

A
q2

bbbḃḃ Shift and go to q9

11. −

q0

A
q2

b
q9

bbḃḃ Shift and go to q9

12. −

q0

A
q2

b
q9

bbḃḃ Reduce by B → b

13. −

q0

A
q2

B

q8

bbḃḃ Shift and go to q12

14. −

q0

A
q2

B
q8

b
q12

bḃḃ Reduce by B → Bb

15. −

q0

A
q2

B
q8

bḃḃ Shift and go to q12

16. −

q0

A
q2

B
q8

b
q12

ḃḃ Reduce by B → Bb

17. −

q0

A
q2

B
q8

ḃḃ Shift and go to q12

Leads to pointer match: Accept

Figure 4.5: Incremental GPLR(1) parse of aaaybbbbb in the example grammar.
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5
Future Work & Conclusions

We conclude by proposing a method to reduce the size of GPLR parsers and

discussing related work.

5.1 Lookahead Generalized Piecewise LR Parsing

While GPLR is a very powerful parsing technique, the parsers produced tend

to be very large. For example, the LALR(1) grammar used to produce the

Fortran 95 parser in Photran [21] produces an LALR(1) cfsm with approximately

2,700 states, while the corresponding GPLR(1) cfsm has almost 90,000.

Furthermore, in an LALR(1) parser, the ActionLR function (usually stored in

tabular form) contains only terminals in its domain, the ActionGPLR function

is defined on terminals, nonterminals, and cancellation symbols (of which there

are thousands). Even with gigabytes of memory and advanced compression

techniques, this disparity in parser size is enough to warrant concern.

Though we will leave a proof of correctness and empirical study to future

work, we will briefly suggest a method for producing more reasonably-sized

GPLR parsers. We call the method lookahead GPLR, or LAGPLR, as it

compresses the GPLR cfsm in the same way that DeRemer’s LALR(k) method

[7] compresses the LR(k) cfsm. Equivalently, it allows a GPLR parser to be

driven from the LR(0) cfsm. (The ideas and portions of the exposition are

borrowed from the author’s previous work on parallel LALR parsing [20].)

5.1.1 LALR Parsers and the DeRemer-Pennello Lookahead

Computation

The concept behind LALR parsing is simple. The set of cores in each state

of the LR(k) cfsm will always be identical to one of the states in the LR(0)

cfsm. That is, the LR(k) cfsm may contain several states with the same cores

but different lookaheads. In theory, the LALR(k) cfsm is constructed from the
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LR(k) cfsm by merging states with identical cores. For example, the two states

q2 = {[A → ab · c, x], [B → · cd, y]} and

q3 = {[A → ab · c, z], [B → · cd, y]}

would be merged into a single state

q2,3 = {[A → ab · c, x], [A → ab · c, z], [B → · cd, y]}.

However, the original purpose of the LALR construction was to avoid construct-

ing the entire LR(k) cfsm due to its large size, so in practice, a different method

is needed.

In [8], DeRemer and Pennello provide a method for constructing LALR(1)

parsers from the LR(0) cfsm. (Our presentation follows the more succinct

description in [26, p. 125–135].) As described in Chapter 2, the lookahead

components of LR(k) items are used only to determine reduce actions. This

method proceeds by defining several relations on the LR(0) machine. The

ultimate result is the has-lalr-lookahead relation: If a reduce item [A → α · ]

appears in a state q of the LR(0) cfsm, then the parser should reduce by A → α

on every lookahead a such that (q, A → α) has-lalr-lookahead a.

The definition of has-lalr-lookahead relation and its component relations

are shown in Figure 5.1. Juxtaposition denotes relational composition, and

GotoLR is extended in the natural way to operate on strings in V ∗:

GotoLR(q, Xα)
def
= GotoLR(GotoLR(q, X), α).

R∗ denotes the reflexive, transitive closure of the relation R. Note that a

successful implementation depends on an efficient algorithm for computing

reflexive, transitive closures. DeRemer and Pennello suggested one due to Eve

and Kurki-Suonio [9], although many others suffice as well.

While precise, these definitions do not give much insight into why has-lalr-lookahead

is correct. We will give a bit of intuition and then illustrate it with a concrete

example.

First, recall the definition of ClosureLR, which defines how LR(1) lookaheads

are computed in the first place:

ClosureLR(I) = I ∪ {[B → · γ, Firstk(βw)] |

[A → α ·Bβ, w] ∈ ClosureLR(I)

and B → γ ∈ P}.

Intuitively, when we are closing a state, we are adding the item [B → · γ, . . .]

to that state because, while we’re in the middle of processing [A → α ·Bβ, w],

we will have to temporarily work our way through some other production and
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has-lalr-lookahead
def
= lookback includes

∗
reads

∗
directly-reads

(GotoLR(q, α), A → α) lookback (q, A) iff state q has an outgoing transition on A

(GotoLR(q, α), A) includes (q, B) iff state q has an outgoing transition on B and
there is a production B → αAβ such that β ⇒∗ ε

reads
def
= goes-to has-null-transition

(q, A) goes-to GotoLR(q, A) iff state q has an outgoing transition on A

q has-null-transition (q, A) iff state q has an outgoing transition on A and A ⇒∗ ε

directly-reads
def
= goes-to has-transition-on terminal

q has-transition-on X iff state q has an outgoing transition on X

X terminal X iff X ∈ VT

Figure 5.1: Definitions comprising the has-lalr-lookahead relation
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reduce it to B before we can move forward to [A → αB · β, w]. After that, the

next symbol to process will be something that can start βw. So all such symbols

should be lookaheads for the [B → · γ, . . .] item. Also, recall that GotoLR takes

existing items and moves the dot forward but does not change the lookahead.

So several states away, we will have a reduce item [B → γ · , . . .] with the same

lookahead.

The DeRemer-Pennello method starts at the corresponding state in the

LR(0) cfsm containing this reduce item [B → γ · ] and works backward through

the cfsm, finding all the states the parser could be in after reducing by B → γ.

Each of those states will contain items of the form [A → α ·Bβ, w], i.e., items

that were being processed before the parser got side-tracked processing the B-

production. If we follow the B-transition out of this state, we will reach the state

corresponding to [A → αB · β, w], and all of the outgoing terminal transitions

will correspond to symbols the parser would expect to see next—i.e., Firstk(βw).

(There is a slight complication to handle the case where the first symbol(s) in

β are nullable nonterminals; we will describe this below.)

To illustrate the method concretely, suppose we have the augmented

grammar

S′ → S

S → AdB | Ce

A → aB

B → b

C → BD

D → ε

which generates the language {abdb, be}. The canonical LR(0) cfsm for this

grammar is shown in Figure 5.2.

Let us calculate the LALR(1) lookahead component for the reduce item

[B → b · ] in state q11.

First, we calculate

(q11, B → b) lookback {(q0, B), (q4, B), (q8, B)}.

If our parser was in state q11 and popped b (the right-hand side of B → b) off

its stack, these are the states it could end up in. So we can just follow the

B-transitions out of q0, q4, and q8, and look at the outgoing terminals to find

the lookahead, right?

Not quite. Remember, we are attempting to answer the question, “What

could be the next symbol that we shift?” It is possible that we may perform

several reductions, including reducing some nonterminals to ε, before we shift
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q0
[S′

→ · S$]
[S → · AdB]
[S → · Ce]
[A → · aB]
[C → · BD]
[B → · b]

q7
[S → Ce · ]

q6
[S → C · e]

q1
[S′

→ S · $]

q2
[S′

→ S$ · ]

q10
[C → BD · ]

q9
[C → B · D]

[D → · ]

q3
[S → A · dB]

q4
[S → Ad · B]

[B → · b]

q5
[S → AdB · ]

q11
[B → b · ]

q8
[A → a · B]
[B → · b]

q12
[A → aB · ]

S $

A

d

B

b
b

b

C
e

B

D

B

a

Figure 5.2: LR(0) cfsm for the LALR lookahead demonstration grammar

the next symbol.

First, if the symbol we reduced to (B) is the rightmost symbol in a

production, the parser could perform another reduction, and if that symbol

were the rightmost in a production, it could perform another reduction, etc.

The includes∗ relation accounts for this. In our example, after reducing by

B → b, if it ended up in q4, it would reduce AdB to S, putting us in q0. Thus,

the parser could end up in state q0 with S on top of its stack; so when we

consider lookaheads, we need to follow the S-transition out of q0 and look at

the outgoing terminals there as well. So the lookahead set should include all of

S’s lookaheads coming out of q0.

There is yet another situation to consider. Recall from above that we plan to

follow the B-transition out of q0. State q0 contains the item [C → BD], but D

is nullable. That effectively makes B the rightmost symbol of this C-production

in q0, and so we also need to follow the C-transition out of q0 and include its

lookahead (e). The reads∗ relation detects strings of nullable nonterminals (like

D in this example) and ensures that we include their lookaheads as well.

Finally, notice that directly-reads simply follows the given nonterminal

transition out of a state and looks for outgoing terminal transitions from there.
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So now we have

(q11, B → b)

lookback {(q0, B), (q4, B), (q8, B)}

includes∗ {(q0, B), (q4, B), (q8, B), (q0, S), (q0, A),

(q0, C), (q4, C), (q8, C)}

reads∗ {(q0, B), (q4, B), (q8, B), (q0, S), (q0, A),

(q0, C), (q4, C), (q8, C), (q9, D)}

directly-reads {d, $, e}.

Note that the lookahead d was obtained from following the A-transition out of

q0; similarly, $ was obtained from (q0, S) and e from (q0, C).

5.1.2 Constructing LAGPLR Parsers

We can now use the ideas behind the LALR construction and the DeRemer-

Pennello lookahead computation to construct a GPLR (“LAGPLR”) parser from

the LR(0) machine. Essentially, we will use a variation on the has-lalr-lookahead

relation to allow nonterminals and cancellation symbols in the lookahead; then

we will describe the computation of continuation states.

Nonterminal Lookaheads

Extending the has-lalr-lookahead relation to compute nonterminals in ad-

dition to terminals is easy. Recall that directly-reads is a relation on

(Q × VN ) × VT , and

directly-reads = goes-to has-transition-on terminal.

By eliminating the terminal relation from this composite, we have the desired

relation on (Q × VN ) × (VN ∪ VT ), which can replace directly-reads in the

lookahead computation to yield both terminals and nonterminals:

directly-reads-sym
def
= goes-to has-transition-on.

Cancellation Lookaheads

Given a state q, we can cancel when the lookahead symbol is 〈A → α · β〉 iff

[A → α · β] is a core in q. But when do we want to reduce on that lookahead

symbol? After we perform the reduction, we want to end up in (1) a state that

contains an item with the core [A → α · β], i.e., a state where we can cancel ;

or (2) a state where we can reduce again, which will in turn lead us to a state

where we can cancel.

Recall from Section 5.1.1 that the states to which we may reduce are given

by the composite relation lookback includes∗. More formally, let q denote a

state in the LR(0) cfsm containing a reduce item [A → α · ]; if the parser were
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to reduce by A → α in state q, the states to which the parser could transition

before shifting the next input symbol and the nonterminals to which it could

reduce are given by the relation reduces-to, which is defined such that

(q, A → α) reduces-to (q′, B) iff (q, A → α) lookback includes∗(q′, B).

Now, recall how lookahead items were computed in the GPLR construction.

If a nonterminal B appeared after the dot in the core of an item, then when that

state was closed, that core was used as the lookahead for all of the the B-items

that were added to the state (with the dot moved one position forward). We

will define a relation contains-cancellation-core which essentially “does this

backwards:” Given a state and a nonterminal B, it selects all of the items with

a B after the dot. These will become the cancellation lookaheads. Letting S

denote the start symbol of the (augmented) grammar, we define

(q′, B) contains-cancellation-core 〈C → αB · β〉 iff

[C → α ·Bβ] ∈ q and (|α| > 0 or B = S) and |β| > 0.

So to find the cancellation lookaheads for a reduce item [A → α · ] in a state

q, we simply find every 〈B → γ · δ〉 such that

(q, A → α) reduces-to contains-cancellation-core 〈B → γ · δ〉 .

The complete LAGPLR lookahead computation can be summarized as the

relation

has-lagplr-lookahead
def
=

lookback includes∗ reads∗ directly-reads-sym

∪ reduces-to contains-cancellation-core.

Continuation States

As with the original GPLR construction, if a unique shift or reduce action

cannot be determined for a given state, the parser should continue. The

intuition used to construct GPLR continuation states can be applied to the

LAGPLR construction as well: We carry shift items over to the continuation

state, and we carry the cancellation lookaheads of reduce items over as cores

in the continuation state. Formally, given a state q in the LR(0) cfsm and a

lookahead symbol X , the continuation state q′ from q on X is constructed as

the closure of the following set of items.

• Every shift item [A → α ·Xβ] in q is included in q′.

• If a reduce action is indicated for an item [A → α · ] in q and

(q, A → α) reduces-to contains-cancellation-core 〈C → β ·Xγ〉 ,
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then [C → β ·Xγ] is included in q′.

One problem remains: How do we determine lookaheads for items in the

continuation state and other primed states? Since continuation states only

have outgoing transitions—they are not reachable from the start state—the

lookahead relations defined above will not work. For example, a continuation

state could reasonably include [A → a · b], but that state cannot be GotoLR(q, a)

for any q since it does not have any incoming transitions.

There are a number of possible solutions. The “best” solution would be to

modify the relations to accommodate primed states. A simpler solution—the

one we will propose—is the following: When we create a continuation state, we

will add “temporary” transitions to the cfsm which are used solely for computing

the relations described above.

When constructing a continuation state q′ from q on X , items are copied

over from several states. We need to record what those states were. Define a

set Qq′,X as the following:

• If there is one or more shift item [A → α ·Xβ] in q (the state from which

we are continuing), then q is included in Qq′,X .

• If a reduce action is indicated for an item [A → α · ] in q and

(q, A → α)

reduces-to (q′′, B)

contains-cancellation-core 〈C → β ·Xγ〉 ,

then q′′ is included in Qq′,X .

Now, repeat the following for every state q2 in Qq′,X : For every state q1 such

that there is a transition from q1 to q2 labeled Y , create a temporary transition

from q1 to q′ labeled Y . (The transition from q1 to q2 may be temporary.)

These temporary transitions are used solely for computing the lookahead

relations defined above; they should be ignored when determining the action of

the parser. (Clearly, when a parser shifts a, it should move to the appropriate

goto state, not to some continuation state due to a temporary transition.)

An Example LAGPLR Parser

We will briefly describe what happens if the example in Section 4.2.3 is reworked

as an LAGPLR parser. The LR(0) cfsm has the same unprimed states as the

GPLR cfsm in Figure 4.2 (although the items do not have lookaheads, of course).

Computing the has-lagplr-lookahead relation on the LR(0) cfsm initially
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produces

(q5, A1 → a) has-lagplr-lookahead {a, x, 〈A1 → A1 · a〉 , 〈A → A1 · x〉}

(q5, A2 → a) has-lagplr-lookahead {a, y, 〈A2 → A2 · a〉 , 〈A → A2 · y〉}

(q12, B → Bb) has-lagplr-lookahead {〈B → B · b〉}

(q8, S → AB) has-lagplr-lookahead {(end of input)}

(q7, A1 → A1a) has-lagplr-lookahead {a, x, 〈A1 → A1 · a〉 , 〈A → A1 · x〉}

(q10, A2 → A2a) has-lagplr-lookahead {a, y, 〈A2 → A2 · a〉 , 〈A → A2 · y〉}

(q11, A → A2y) has-lagplr-lookahead {B, b, 〈S → A ·B〉}

(q9, B → b) has-lagplr-lookahead {(end of input), 〈B → B · b〉}

(q6, A → A1x) has-lagplr-lookahead {B, b, 〈S → A ·B〉}.

There is a reduce-reduce conflict in state q5 on lookahead a, so we need to

compute a continuation state. We will call this state q13, as it turns out to be

the analog of state q13 in Figure 4.2. There are no a-shift items to carry over

from q5. We have

(q5, A1 → a)

reduces-to{(q0, A1)}

contains-cancellation-core{〈A → A1 · x〉 , 〈A → A1 · x〉}

and

(q5, A2 → a)

reduces-to{(q0, A2)}

contains-cancellation-core{〈A → A2 · y〉 , 〈A → A2 · y〉}.

Two of these cancellation symbols have as after the dot, and so

q13
def
= {[A1 → A1 · a], [A2 → A2 · a]}.

Now Qq13,a = {q0}, and q0 has no incoming transitions, so we do not need

to form any temporary transitions to q13. The goto successor for q13 on a is

q5 (unlike in Section 4.2.3, where it produced a new primed state q14). At

this point, we can recompute the has-lagplr-lookahead relation and check

for missing continuation states; there are none, and so the cfsm construction is

complete.

An LAGPLR parse of aaaaxbbb is shown in Figure 5.3. It is identical to

Figure 4.3 except that every occurrence of q14 has been replaced with q5. As

before, the symbol 〈∗〉 is used to denote 〈A1 → A1 · a〉.
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5.2 Related Work

While this thesis is, to the author’s knowledge, the first discussion of a parsing

algorithm that is both incremental and noncanonical, the topics of incremental

and noncanonical parsing both have extensive but independent treatments in

the literature.

Of the techniques for incrementality in LR parsers, Celentano’s is perhaps

the simplest, as it comprises an easy change in parser implementation, with no

modification to the underlying parsing algorithm. An alternative implementa-

tion is given by Yeh and Kastens [32]. Both methods are improvements on the

seminal work by Ghezzi and Mandrioli [11, 12]. If a parse tree or abstract syntax

tree will be generated by the parse (as opposed to some other semantic action),

the method of Wagner and Graham [30] may be preferable, as it calculates an

incremental parse from the syntax tree rather than storing state information

explicitly. In a similar vein, Larchevêque [19] requires a threaded syntax tree, as

introduced in Ghezzi and Mandrioli [13, 14]. Degano, Mannucci, and Mojana

[6] take a different approach entirely, defining a new parsing algorithm (“jump-

shift-reduce”) based on splitting the parsing tables produced by the LR parsing

algorithm.

Many noncanonical parsing techniques have been proposed. Some could be

made incremental using Celentano’s algorithm, while others cannot; those that

do admit a lemma similar to Lemma 1, that is, terminals are scanned from

left to right, and each terminal is “read” exactly once. One of the earliest

works on noncanonical parsing is due to Szymanski [28] (also described in [27]),

who built on Knuth’s [18] LR(k, t) algorithm. His general framework allows

symbols to be “poured” back and forth between the two stacks an arbitrary

number of times, making incrementality à la Celentano infeasible. However,

more restricted versions—including his FSPA and LR(k, ∞) algorithms—scan

the input once, left-to-right, pushing only nonterminals back onto the input

stack. Tai’s noncanonical SLR(1) parsers [29] and Schmitz’s noncanonical

LALR(1) parsers [24] enjoy the same property, and thus are candidates for

incrementalization. Cǔlik and Cohen’s LR-regular parsers [17] do not, as the

input must be scanned twice, first from right to left and then from left to right.

Other noncanonical parsing techniques include total precedence [5], BCP [31],

and Full SPM [10].

5.3 Conclusion

The Generalized Piecewise LR parsing algorithm is one of the most powerful,

deterministic parsing techniques known. By allowing unbounded right context,

it can alleviate many of the problems typically encountered when designing

LALR(1) grammars, and the use of cancellation allows it to accept many

grammars that cannot be handled by other noncanonical techniques that only
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allow terminal and nonterminal lookaheads. Following an intuitive development

of the LR(k) and GPLR algorithms, we have illustrated and proved that

the GPLR parsers can be made incremental, allowing them to re-parse small

segments of a document as they are changed (for example, in a language-based

editor). Future research includes a techniques for reducing the size of GPLR

parsers and applications of incremental parsing techniques to other noncanonical

parsing algorithms.
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Step Parser Stack Input Stack Action

1. −

q0
aaaaxbbb Shift and go to q5

2. −

q0

a
q5

aaaxbbb Continue in q13

3. −

q0

a
q5

⊥

q13
aaaxbbb Shift and go to q5

4. −

q0

a
q5

⊥

q13

a
q5

aaxbbb Continue in q13

5. −

q0

a
q5

⊥

q13

a
q5

⊥

q13
aaxbbb Shift and go to q5

6. −

q0

a
q5

⊥

q13

a
q5

⊥

q13

a
q5

axbbb Continue in q13

7. −

q0

a
q5

⊥

q13

a
q5

⊥

q13

a
q5

⊥

q13
axbbb Shift and go to q5

8. −

q0

a
q5

⊥

q13

a
q5

⊥

q13

a
q5

⊥

q13

a
q5

xbbb Reduce by A1 → A1a

9. −

q0

a
q5

⊥

q13

a
q5

⊥

q13

a
q5

〈∗〉A1 xbbb Reduce by A1 → A1a

10. −

q0

a
q5

⊥

q13

a
q5

〈∗〉A1 〈∗〉 A1 xbbb Reduce by A1 → A1a

11. −

q0

a
q5

〈∗〉A1 〈∗〉A1 〈∗〉 A1 xbbb Reduce by A1 → a

12. −

q0

A1
q1

〈∗〉A1 〈∗〉A1 〈∗〉 A1 xbbb Cancel 〈A1 → A1 · a〉

13. −

q0
A1 〈∗〉A1 〈∗〉 A1 xbbb Shift A1

14. −

q0

A1
q1

〈∗〉A1 〈∗〉 A1 xbbb Cancel 〈A1 → A1 · a〉

15. −

q0
A1 〈∗〉 A1 xbbb Shift A1

16. −

q0

A1
q1

〈∗〉 A1 xbbb Cancel 〈A1 → A1 · a〉

17. −

q0
A1 xbbb Shift A1

18. −

q0

A1
q1

xbbb Shift x

19. −

q0

A1
q1

x
q6

bbb Reduce by A1 → A1x

20. −

q0

A1

q1

bbb Reduce by A → A1

21. −

q0

A

q2

bbb Shift b

22. −

q0

A
q2

b
q9

bb Reduce by B → b

23. −

q0

A
q2

B
q8

bb Shift b and go to q12

24. −

q0

A
q2

B
q8

b
q12

b Reduce by B → Bb

25. −

q0

A
q2

B

q8

b Shift b and go to q12

26. −

q0

A
q2

B
q8

b
q12

(end of input) Reduce by B → Bb

27. −

q0

A
q2

B
q8

(end of input) Reduce by S → AB

28. −

q0

S
q4

(end of input) Accept

Figure 5.3: Complete LAGPLR(1) parse of aaaaxbbb in the example grammar.
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A
Supplement to Figure 4.2

Below is a complete listing of the items in each state of the canonical finite state

machine in Figure 4.2 and the corresponding parser actions.

q0:

On <A1> go to q1

On <A2> go to q3

On <S> go to q4

On a go to q5

On <A> go to q2

Shift <A1>

Shift <A>

Shift <A2>

Shift <S>

Shift a

Cancel <@start> ::= <S> .

Cancel <S> ::= <A> . <B>

Cancel <S> ::= <A> . <B>

Cancel <A> ::= <A1> . x

Cancel <A> ::= <A1> . x

Cancel <A> ::= <A2> . y

Cancel <A> ::= <A2> . y

Cancel <A1> ::= <A1> . a

Cancel <A1> ::= <A1> . a

Cancel <A2> ::= <A2> . a

Cancel <A2> ::= <A2> . a

[ <@start> ::= . <S> , ] (basis item)

[ <S> ::= . <A> <B> , <@start> ::= <S> . ]

[ <A> ::= . <A1> x , <S> ::= <A> . <B> ]

[ <A> ::= . <A2> y , <S> ::= <A> . <B> ]

[ <A1> ::= . <A1> a , <A> ::= <A1> . x ]

[ <A1> ::= . a , <A> ::= <A1> . x ]

[ <A2> ::= . <A2> a , <A> ::= <A2> . y ]

[ <A2> ::= . a , <A> ::= <A2> . y ]

[ <A1> ::= . <A1> a , <A1> ::= <A1> . a ]

[ <A1> ::= . a , <A1> ::= <A1> . a ]

[ <A2> ::= . <A2> a , <A2> ::= <A2> . a ]

[ <A2> ::= . a , <A2> ::= <A2> . a ]
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q1:

On x go to q6

On a go to q7

Shift x

Shift a

Cancel <S> ::= <A> . <B>

Cancel <A> ::= <A1> . x

Cancel <A1> ::= <A1> . a

[ <A> ::= <A1> . x , <S> ::= <A> . <B> ] (basis item)

[ <A1> ::= <A1> . a , <A> ::= <A1> . x ] (basis item)

[ <A1> ::= <A1> . a , <A1> ::= <A1> . a ] (basis item)

q2:

On <B> go to q8

On b go to q9

Shift <B>

Shift b

Cancel <@start> ::= <S> .

Cancel <@start> ::= <S> .

Cancel <@start> ::= <S> .

Cancel <B> ::= <B> . b

Cancel <B> ::= <B> . b

[ <S> ::= <A> . <B> , <@start> ::= <S> . ] (basis item)

[ <B> ::= . <B> b , <@start> ::= <S> . ]

[ <B> ::= . b , <@start> ::= <S> . ]

[ <B> ::= . <B> b , <B> ::= <B> . b ]

[ <B> ::= . b , <B> ::= <B> . b ]

q3:

On y go to q11

On a go to q10

Shift a

Shift y

Cancel <S> ::= <A> . <B>

Cancel <A> ::= <A2> . y

Cancel <A2> ::= <A2> . a

[ <A> ::= <A2> . y , <S> ::= <A> . <B> ] (basis item)

[ <A2> ::= <A2> . a , <A> ::= <A2> . y ] (basis item)

[ <A2> ::= <A2> . a , <A2> ::= <A2> . a ] (basis item)

q4:

[ <@start> ::= <S> . , ] (basis item)

q5:

On a continue to q13
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Reduce on x

Continue on a

Reduce on y

Reduce on <A> ::= <A1> . x

Reduce on <A> ::= <A2> . y

Reduce on <A1> ::= <A1> . a

Reduce on <A2> ::= <A2> . a

[ <A1> ::= a . , <A> ::= <A1> . x ] (basis item)

[ <A2> ::= a . , <A> ::= <A2> . y ] (basis item)

[ <A1> ::= a . , <A1> ::= <A1> . a ] (basis item)

[ <A2> ::= a . , <A2> ::= <A2> . a ] (basis item)

q6:

Reduce on <B>

Reduce on b

Reduce on <S> ::= <A> . <B>

[ <A> ::= <A1> x . , <S> ::= <A> . <B> ] (basis item)

q7:

Reduce on x

Reduce on a

Reduce on <A> ::= <A1> . x

Reduce on <A1> ::= <A1> . a

[ <A1> ::= <A1> a . , <A> ::= <A1> . x ] (basis item)

[ <A1> ::= <A1> a . , <A1> ::= <A1> . a ] (basis item)

q8:

On b go to q12

Shift b

Reduce on <@start> ::= <S> .

Reduce on <@start> ::= <S> .

Cancel <B> ::= <B> . b

[ <S> ::= <A> <B> . , <@start> ::= <S> . ] (basis item)

[ <B> ::= <B> . b , <@start> ::= <S> . ] (basis item)

[ <B> ::= <B> . b , <B> ::= <B> . b ] (basis item)

q9:

Reduce on b

Reduce on <@start> ::= <S> .

Reduce on <B> ::= <B> . b

[ <B> ::= b . , <@start> ::= <S> . ] (basis item)

[ <B> ::= b . , <B> ::= <B> . b ] (basis item)

q10:
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Reduce on a

Reduce on y

Reduce on <A> ::= <A2> . y

Reduce on <A2> ::= <A2> . a

[ <A2> ::= <A2> a . , <A> ::= <A2> . y ] (basis item)

[ <A2> ::= <A2> a . , <A2> ::= <A2> . a ] (basis item)

q11:

Reduce on <B>

Reduce on b

Reduce on <S> ::= <A> . <B>

[ <A> ::= <A2> y . , <S> ::= <A> . <B> ] (basis item)

q12:

Reduce on b

Reduce on <@start> ::= <S> .

Reduce on <B> ::= <B> . b

[ <B> ::= <B> b . , <@start> ::= <S> . ] (basis item)

[ <B> ::= <B> b . , <B> ::= <B> . b ] (basis item)

q13: (Continuation State)

On a go to q14

Shift a

Cancel <A> ::= <A1> . x

Cancel <A1> ::= <A1> . a

Cancel <A> ::= <A2> . y

Cancel <A2> ::= <A2> . a

[ <A1> ::= <A1> . a , <A> ::= <A1> . x ] (basis item)

[ <A1> ::= <A1> . a , <A1> ::= <A1> . a ] (basis item)

[ <A2> ::= <A2> . a , <A> ::= <A2> . y ] (basis item)

[ <A2> ::= <A2> . a , <A2> ::= <A2> . a ] (basis item)

q14: (Continuation State)

On a continue to q13

Reduce on x

Continue on a

Reduce on y

Reduce on <A> ::= <A1> . x

Reduce on <A1> ::= <A1> . a

Reduce on <A> ::= <A2> . y

Reduce on <A2> ::= <A2> . a

[ <A1> ::= <A1> a . , <A> ::= <A1> . x ] (basis item)

[ <A1> ::= <A1> a . , <A1> ::= <A1> . a ] (basis item)

[ <A2> ::= <A2> a . , <A> ::= <A2> . y ] (basis item)

[ <A2> ::= <A2> a . , <A2> ::= <A2> . a ] (basis item)
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