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Abstract

Effect systems are important for reasoning about the
side effects of a program. Although effect systems have
been around for decades, they have not been widely
adopted in practice because of the large number of
annotations that they require. A tool that infers effects
automatically can make effect systems practical. We
present an effect inference algorithm and an Eclipse plug-
in, DPJIZER, that alleviate the burden of writing effect
annotations for a language called Deterministic Parallel
Java (DPJ). The key novel feature of the algorithm is the
ability to infer effects on nested heap regions. Besides
DPJ, we also illustrate how the algorithm can be used
for a different effect system based on object ownership.
Our experience shows that DPJIZER is both useful and ef-
fective: inferring effects annotations automatically saves
significant programming burden; and inferred effects are
comparable to those in manually-annotated programs,
while in many cases they are more accurate.

1. Introduction

Programs written in mainstream, imperative languages
have side effects on program’s memory. Programmers
have embraced this paradigm because it avoids passing
program’s state between different functions. However,
this paradigm also makes it harder for programmers or
tools to understand or analyze programs in a modular
fashion.

Knowing what parts of the program’s state are mutated
by a function can help programmers modify large pro-
grams without introducing subtle mutation errors and can
serve as explicit, machine-checkable documentation. It
can enable safety tools to detect inconsistencies between
intended usage of API methods and their actual usage,
it is a building block for several other compiler analyses
(e.g., MODREF analysis), and it can enable compilers to
check the safety of parallel programs [1]–[3].

Although effect systems have been around for decades,
they have not been used much in the software engineering

practice. The reason is that manually writing such effects
is tedious and error-prone. In this paper we present an
algorithm that automatically infers the effects of each
program statement and summarizes them at the level of
method declarations as method effect summaries. The key
novel capability in the algorithm is that it is able to
handle effect inference for programs even on “nested heap
structures,” including recursive as well as non-recursive
data structures.

We have used the algorithm to develop an effect
inference tool for a previously developed extension to
Java, called Deterministic Parallel Java (DPJ) [4], [5],
which aims to enable programmers to write safe parallel
programs. The effect system in DPJ is based on “regions,”
which are partitions of the heap, down to the granularity
of individual fields. We also illustrate briefly how the
algorithm could be used for a very different class of effect
systems based on “object ownership” [6].

DPJ is an explicitly parallel language that uses a region
and effect system to guarantee that any program that type-
checks will have deterministic visible behavior, i.e., the
program will produce identical externally visible results
in all executions for a given input. Such deterministic
semantics can greatly simplify parallel program design,
debugging, testing and maintenance because it allows
programs to reason about programs with a simple, se-
quential semantic model and debug and test the program
using versions of familiar sequential tools. Using DPJ,
we have safely parallelized several programs [5]; the
parallel programs are deterministic and they exhibit good
speedup. However, to get these benefits the programmer
has to write region and effect annotations by hand. This
job is non trivial, error-prone, and time consuming. For
example, a Monte Carlo financial application contains
2877 LOC, 29 region annotations, and 24 effect anno-
tations. A Barnes-Hut N-body application contains 682
LOC, 91 region annotations, and 46 effect annotations.

DPJIZER alleviates the programmer’s burden when writ-
ing effect annotations. Given a program with region
annotations, DPJIZER infers the method effect summaries
and annotates the program. We implemented DPJIZER as an



extension to Eclipse’s refactoring engine, thus it offers all
the convenient features of a practical refactoring engine:
previewing changes, selection of edits to be applied,
undo/redo, etc.

At the heart of DPJIZER lies an algorithm that statically
infers side effects on field regions. The input of the
algorithm is a program where shared fields are annotated
with region information. The algorithm infers for each
method the method effect summary that covers the effects
(reads/writes) on declared regions. When summarizing
the effect information, DPJIZER eliminates redundant ef-
fects, which makes the effect annotations concise and
easier to understand.

The inference algorithm is built on a classical
constraint-based type-inference approach, but we use it
to infer effects. The algorithm generates constraints from
primitive operations (variable access, assignment, method
calls, and method overriding declarations), using the
appropriate parameter and type substitutions at method
invocations. It then solves these constraints by processing
them iteratively and propagating the constraints through
the call graph until a fixed point is reached and no more
constraints are discovered. The novelty in the algorithm
lies in the constraint solving phase. This phase handles
nested regions by taking advantage of the structure of
region specifications in the target language (e.g., Region
Path Lists [5] in DPJ or object “levels” in the object own-
ership system, JOE [6]). It handles recursive structures by
summarizing these nested structures in each case.

Although DPJIZER is designed to help in porting a Java
program to DPJ, its applicability goes well beyond DPJ.
Given a concurrent program that uses shared memory, by
inferring the method effects, DPJIZER helps a programmer
discover the patterns of shared data. This information is
crucial in helping the programmer find out the accesses
to shared data that need to be protected. Moreover,
the underlying algorithm is useful beyond concurrent
programs. For example, as noted earlier, we show how the
algorithm can be used to infer effects for a different effect
specification system based on object ownership, which is
a general mechanism to reason about and express the side
effects of object-oriented programs.

This paper makes the following contributions:
1. Algorithm. To the best of our knowledge, this paper

presents the first algorithm for inferring method effect
summaries for a full Object-Oriented language (e.g.,
aliasing, recursion, polymorphism, generics, arrays, etc.)
with a sophisticated effect system (e.g., parameterized
regions, nested regions for recursive data-structures, etc.).

2. Tool.We implemented the effect inference algorithm
in an interactive tool called DPJIZER. A programmer can
use DPJIZER to infer method effects for a Java or a
DPJ program. DPJIZER writes the inferred effects into the
source code as DPJ annotations or as code comments.

DPJIZER is built as an Eclipse plugin that extends Eclipse’s
refactoring engine.

3. Evaluation. We used DPJIZER to infer method effects
in several real programs. We compare the effects inferred
with DPJIZER against effects manually inferred by program-
mers. The comparison shows that DPJIZER can drastically
reduce the burden of writing annotations manually, while
the automatically inferred effects are more accurate.

2. Overview of DPJ

In this section we briefly introduce the Deterministic
Parallel Java (DPJ) language [5]. We say that two tasks
are noninterfering if for each pair of memory accesses,
one from each task, either both accesses are reads, or
the two accesses operate on disjoint sets of memory
locations.1 Noninterfering tasks can be run in parallel
while still exhibiting the same behavior as if they were
run sequentially.

DPJ provides a type system that guarantees nonin-
terference of parallel tasks for a well-typed program.
In DPJ, the programmer assigns every object field and
array cell to a region of memory and annotates each
method with a summary (called a method effect summary)
of the method read and write effects. The programmer
also marks which code sections to run in parallel, using
several standard constructs, such as cobegin for parallel
statement execution and foreach for parallel loops. The
compiler uses the region annotations and method effect
summaries to check that all pairs of parallel tasks are
noninterfering.

2.1. Region Names

Figure 1 illustrates the use of region names to dis-
tinguish writes to different fields of an object. Line
2 declares Mass and Force as region names that are
available within the scope of class Node. These are called
field region declarations. Lines 3 and 4 declare fields
mass and force and place them in regions Mass and
Force, respectively. Field region declarations are static,
so there is one for each class. For example, all mass fields
of all Node instances are in the same region, Mass.

Each method must have a method effect summary
recording the effects that it performs on the heap, in
terms of reads and writes to regions. For example, method
setMass (line 5) has the summary writes Mass, be-
cause the effect of line 6 is to write the field mass,
located in region Mass; and similarly for setForce (line
9). It is permissible for a method effect summary to be
overly conservative; for example, setMass could have

1. The full DPJ language [5], [7] also allows commutativity annota-
tions that specify noninterference directly, without checking reads and
writes. Here we focus on inferring read and write effects.



1 class Node {
2 region Mass, Force;
3 double mass in Mass;
4 double force in Force;
5 void setMass(double mass) writes Mass {
6 /* writes Mass */
7 this.mass = mass;
8 }
9 void setForce(double force) writes Force {

10 /* writes Force */
11 this.force = force;
12 }
13 void initialize(double mass, double force)
14 writes Mass, Force {
15 cobegin {
16 /* writes Mass */
17 this.setMass(mass);
18 /* writes Force */
19 this.setForce(force);
20 }
21 }
22 }

Figure 1. Using field region names to distinguish
writes to different object fields. In Section 3, we
will show how to infer the underlined method effect
summaries.

said writes Mass, Force. However, this may inhibit
parallelism. It is an error for a method effect summary to
be not conservative enough, for example if setMass had
said pure, meaning “no effect.”

Together, the DPJ annotations allow the compiler to
efficiently analyze noninterference of parallel code sec-
tions, as illustrated in the initialize method. From
the method effect summaries, the compiler can infer that
the effect of line 17 is writes Mass and the effect of
line 19 is writes Force. The compiler can then use
the distinctness of the names Mass and Force to prove
noninterference: although both statements in the cobegin
perform writes, the writes are to disjoint regions of the
heap.

2.2. Region Parameters

As shown in section 2.1, region names are useful for
distinguishing parts of an object from each other. Often,
however, we need to distinguish different object instances
from each other. To do this, DPJ uses region parameters,
which operate similarly to Java generic parameters [8]
and allow us to instantiate different object instances of
the same class with different regions.

Figure 2 illustrates the use of region parameters to
distinguish writes to different object instances. In line 1,
we declare class Node to have one region parameter P

(we use the keyword region to distinguish DPJ region
parameters from Java type parameters). As with Java
generics, when we write a type using a class with region
parameters, we provide an argument to the parameter, as
shown in lines 4 and 5. The argument must be a valid
region name in scope.

1 class Node<region P> {
2 region L, R;
3 double mass in P;
4 Node<L> left in L;
5 Node<R> right in R;
6 void setMass(double mass) writes P {
7 /* writes P */
8 this.mass = mass;
9 }

10 void setMassOfChildren(double mass) writes L, R {
11 cobegin {
12 /* writes L */
13 if (left != null) left.setMass(mass);
14 /* writes R */
15 if (right != null) right.setMass(mass);
16 }
17 }
18 }

Figure 2. Using region parameters to distinguish
writes to different object instances.

We can use the region name P within the scope of the
class. For example, line 3 declares field mass in region
P. When this.mass is accessed, the effect is on region
P, as shown in line 8. However, when we access field
mass through a selector other than this, we resolve
the region P by substituting the actual argument given
in the type of the selector. For example, the effect of
left.setMass in line 13 is writes L. We get this by
looking at the declaration writes P of setMass and
substituting L for P from the type of left. (The read
of field left also generates a read effect on region L;
but in DPJ, write effects imply read effects, so the read
is covered by writes L.) We can then use an analysis
similar to the one discussed in Section 2.1 to prove that
the statements in lines 13 and 15 are noninterfering, since
their write effects are on the disjoint regions L and R.

2.3. Region Path Lists (RPLs)

In conjunction with array index regions and index-
parameterized arrays (discussed further in Section 3.4.1),
basic region names and region parameters can be used
to express important parallel algorithms. However, it is
often essential to be able to express a nesting relation-
ship between regions. For example, to express tree-like
recursive updates we need a nested hierarchy of regions.
DPJ provides two ways to express nesting: region path
lists and owner regions. Here we focus on region path
lists; we defer the discussion of owner regions until after
we have presented the effect inference algorithm.

A region path list (RPL) extends the idea of a simple
region name introduced in Section 2.1. An RPL is a
colon-separated list of names that expresses the nesting
relationship syntactically: if P and R are names, then P:R

is nested under P. Nested RPLs are particularly useful in
conjunction with region parameters: if we append names
to parameters, such as P:L and P:R, then by recursive



substitution we can generate arbitrarily long chains of
names, such as P:L:L:R.

1 class Node<region P> {
2 region L,R;
3 double mass in P;
4 Node<P:L> left in P:L;
5 Node<P:R> right in P:R;
6 void setMassForTree(double mass) writes P:* {
7 /* writes P */
8 this.mass = mass;
9 cobegin {

10 /* writes P:L:* */
11 if (left != null) left.setMassForTree(mass);
12 /* writes P:R:* */
13 if (right !=null) right.setMassForTree(mass);
14 }
15 }
16 }

Figure 3. Using RPLs and region parameters to
recursively update a tree in parallel.

Figure 3 illustrates the use of this technique to write
a recursive tree update. The example is similar to the
one shown in Figure 2, except that lines 4 and 5 use
regions P:L and P:R instead of L and R, and the method
invocations in lines 11 and 13 are recursive. To write
the method effect summary in line 6, we need some new
syntax: because the tree can be arbitrarily deep, and the
RPLs arbitrarily long, we use a star (*) to stand in for
any sequence of RPL elements. Then we can write the
method effect summary writes P:*, as shown in line 6.
Note that the rules discussed in Section 2.1 for method
effect summaries are still followed: by substituting the
RPL arguments in the types of left and right in for
P, we get the inferred effects shown in lines 10 and 12;
and those effects are covered by the summary. Further,
because the RPLs form a tree, we can conclude that all
regions under P:L and all regions under P:R are disjoint,
so lines 11 and 13 are noninterfering.

3. Effect Inference Algorithm

We present our algorithm using Core DPJ [5], a
small skeleton language that illustrates the ideas yet is
tractable to formalize. To make the presentation easier
to follow, we start with a simplified form of Core DPJ
corresponding to the features introduced in Section 1,
i.e., basic region names with no region parameters or
nesting. Then we build up the language to add region
parameters and region path lists. We also discuss how
to handle owner regions, array regions, and inheritance.
Finally, we discuss how to adapt the algorithm for use
with other languages.

3.1. Basic region names

We start by showing how to infer effects for Core DPJ
with basic region names, i.e., with no region parameters

or nested regions. Figure 4 shows the syntax of the
initial language. The algorithm consists of two phases,
constraint generation and constraint solving.

Meaning Symbol Definition
Programs program region-decl∗ class∗

Region decls region-decl region r
Classes class class C {field∗ µ∗}

Fields field T f in r
Types T C

Methods µ T m(T x) { e }
Expressions e this.f | this.f = e | e.m(e) | new T | z

Variables z this | x

Figure 4. Syntax of Core DPJ with basic region
names. C, f , m, x and r are identifiers.

3.1.1. Constraint generation. The goal of the constraint
generation phase is to associate with each method µ a
constraint set Kµ, where each element of Kµ is one of
the constraints reads r, writes r, and invokes µ′. The first
two constraints indicate the presence of a read or write
effect in the method itself. The invokes constraint asserts
that one method is invoking another, either directly or
indirectly; these constraints will cause the solving phase
(Section 3.1.2) to account for the read and write effects
of callees.

The constraint generation phase visits each method
body and walks the AST to generate a set of constraints.
Figure 5 shows the constraint generation rules for the
simplified language. The rules are similar to the ones
for typing DPJ expressions [5], except that we do not
check assignments or method formal parameter bindings
for soundness (we assume that full DPJ type checking
has been done as a separate pass).

(FIELD-ACCESS) (this, C) ∈ Γ field(C, f) = T f in r
Γ ` this.f : T, {reads r}

(ASSIGN) (this, C) ∈ Γ Γ ` e : T, K field(C, f) = T ′ f in r
Γ ` this.f = e : T, K ∪ {writes r}

(INVOKE) Γ ` e1 : C, K1 Γ ` e2 : T, K2 method(C, m) = µ
µ = Tr m(Tx x) { e }

Γ ` e1.m(e2) : Tr, K1 ∪K2 ∪ {invokes µ}
(NEW) ·

new C : C, ∅
(VARIABLE) (z, T ) ∈ Γ

z : T, ∅

Figure 5. Rules for computing the constraints gener-
ated by an expression.

The judgment Γ ` e : T, K means that expression e has
type T and generates constraint set K in environment Γ.
The environment Γ is a set of pairs (z, T ) binding variable
z to type T . The term method(C,m) means the method
named m defined in class C, while field(C, f) means
the field named f defined in class C. For each method
µ = Tr m(Tx x) { e } , let Cµ be the class where µ is



defined. Then Kµ is just the set of constraints such that

{(this, Cµ), (x, Tx)} ` e : T, Kµ.

As an example, we show how to generate the con-
straints for the bodies of methods setMass, setForce
and initialize in Figure 1. In line 7, rule FIELD-ACCESS

generates the constraint reads Mass for reading the right-
hand side of the assignment. Similarly, rule ASSIGN gen-
erates the constraint writes Mass for assignment to the
field in region Mass and the constraint writes Force

for method setForce. In method initialize, there
are two method invocations (lines 17 and 19). Therefore,
rule INVOKE generates two constraints invokes setMass

and invokes setForce.

3.1.2. Constraint solving. The goal of the constraint
solving phase is to associate with each method µ an effect
set Eµ, where each element of Eµ is one of the effects
reads r or writes r. This phase comprises the following
steps:

1) For each method µ, for each constraint invokes µ′

in Kµ, add the elements of Kµ′ to Kµ.
2) Repeat step 1 until no more constraints are added

to any Kµ.
In step 1, we prune the constraint sets Kµ by never adding
redundant constraints. For example, since writes cover
reads in our effect system, there is no need for any Kµ

to contain both reads r and writes r; the second constraint
suffices.

The algorithm terminates, because the total number of
regions is bounded, so the total number of constraints
that can be added to the Kµ is bounded. At the end of
this process, for each µ we let Eµ = effects(Kµ), where
the function effects extracts the read and write constraints
(i.e., the effects) from Kµ. As an example, from Figure 1,
the constraints invokes setMass and invokes setForce

generate the effects writes Mass and writes Force.

3.2. Region Parameters

In this section, we extend Core DPJ by adding region
parameters. Figure 6 shows the new syntax.

Meaning Symbol Definition
Classes class class C〈P 〉 {field∗ µ∗}

Regions R r | P
Types T C〈R〉

Figure 6. New syntax of Core DPJ with region
parameters. P is an identifier.

3.2.1. Constraint generation. Figure 7 shows the rules
for generating reads, writes, and invokes constraints in
Core DPJ with region parameters. The new rule INVOKE

records the region substitution θ = {P 7→ R} that the
constraint solver will need when translating the effects
of one method to another. The term param(C) represents
the region parameter P of class C.

(FIELD-ACCESS) (this, C〈P 〉) ∈ Γ field(C, f) = T f in R
Γ ` this.f : T, {reads R}

(ASSIGN) (this, C〈P 〉) ∈ Γ Γ ` e : T, K field(C, f) = T ′ f in R
Γ ` this.f = e : T, K ∪ {writes R}

(INVOKE) Γ ` e1 : C〈R〉, K1 Γ ` e2 : T, K2 method(C, m) = µ
µ = Tr m(Tx x) { e } θ = {param(C) 7→ R}

Γ ` e1.m(e2) : θ(Tr),K1 ∪K2 ∪ {invokes µ where θ }
(NEW) ·

new C〈R〉 : C〈R〉, ∅
(VARIABLE) (z, T ) ∈ Γ

z : T, ∅

Figure 7. Rules for generating constraints in Core
DPJ with region parameters.

As an example, we show how to generate the con-
straints for the code in Figure 2. According to rule ASSIGN,
line 8 generates the constraint writes P. In line 13,
Rule FIELD-ACCESS generates the constraint reads L for
accessing the field left. Then, because the type of
this.left is Node<L>, rule INVOKE generates the con-
straint set {reads L, invokes setMass where {P 7→ L}}.
Line 15 generates similar constraints, using region R

instead of L.

3.2.2. Constraint solving. The constraint solving phase
is identical to the one described in Section 3.1.2, except
that the algorithm applies substitutions θ in resolving
invokes constraints:

1) For each method µ, for each constraint (invokes µ′

where θ) in Kµ, add the elements of θ(Kµ′) to Kµ.
2) Repeat step 1 until no more constraints are added

to any Kµ.
Here we apply the substitution θ elementwise to sets Kµ,
and we apply θ to constraints as follows:

θ(reads R) = reads θ(R)
θ(writes R) = writes θ(R)

θ(invokes µ where θ′) = invokes µ where θ(θ′)
θ({P 7→ R}) = {P 7→ θ(R)}

The algorithm terminates for the same reason given in
Section 3.1.2.

Figure 8 illustrates the constraints and effects in-
ferred by each iteration of the algorithm on the method
setMassOfChildren in Figure 2. For brevity, we show
only the effects coming from left.setMass(). The
effect of method setMass is summarized as writes P in
iteration 0 (just before execution of step 3). In iteration 1,
the invokes effect leads the algorithm to infer the effect



writes L by applying the substitutions P 7→ L on the effect
of setMass. The algorithm does not infer any new effects
in iteration 2, so it terminates after the second iteration.

Iteration 0 Iteration 1
Effects reads L writes L
Constraints invokes setMass where {P 7→ L}

Figure 8. Effects and constraints inferred
in each iteration of the algorithm for method
setMassOfChildren in Figure 2

3.3. Region Path Lists (RPLs)

In this section, we add RPLs to Core DPJ. Only the
syntax for regions, shown in Figure 9, is new. Root is a
special name representing the root of the region tree.

Meaning Symbol Definition
Regions R Root | r | P | R : r | R : ∗

Figure 9. Syntax of RPLs.

Constraint generation is the same as explained in
Section 3.2.1. However, we need to extend the solving
phase to handle recursion that would not terminate if
we naively applied the algorithm from Section 3.2.2. For
example, that algorithm would not terminate on the code
in Figure 3, because it would try to infer effects on infinite
chains of RPL elements, such as P : L : R : · · · . In such
a case, we want to cut off the recursion and summarize
the infinite set of RPLs with a partially specified RPL
ending in ∗, as described in Section 2.3.

3.3.1. Algorithm description. Figure 10 shows the mod-
ified constraint solving algorithm. The algorithm iterates
until all the effect and constraint sets stabilize. As before,
each iteration of the main loop iterates over the method
set M and adds effects implied by the invokes constraints
of Kµ.

However, instead of just adding an invokes con-
straint, we first check whether the constraint is recur-
sive and has an expanding substitution. A constraint
(invokes µ where θ) ∈ Kµ′ is recursive if µ = µ′, i.e.,
the method includes its own effects, through a chain
of one or more invocations. A substitution P 7→ R is
expanding if P is the first RPL element of R, and R
has more than one element. For example, P 7→ P : R is
expanding but P 7→ P and P 7→ P ′ : R are not. If the
constraint is recursive and has an expanding substitution,
then we summarize the effects of Kµ by replacing each
appearance of P in effects(Kµ) with P : R : ∗, and
we add all new effects generated this way back into
Kµ. In line 5, the function summarize takes P 7→ R
to P 7→ R : ∗.

If the constraint is either not recursive or not expanding
(line 6), then we add the effects of Eµ′ to Eµ after
applying the substitution θ. We also add the non-recursive
or non-expanding invokes constraints of Kµ′ to Kµ, again
after applying θ (line 9), so we can continue down the
call graph until we hit an expanding recursion.

As before, all unions are up to redundant constraints
and effects. For instance, once writes R : ∗ appears in Kµ,
we never again add reads R or writes R to Kµ in line
5. Similarly, once invokes µ with P 7→ P : R appears in
Kµ, we never add invokes µ with P 7→ P : R : R in line
10. This pruning ensures that the algorithm terminates
(Section 3.3.3).

input : Program P with region annotations
Set M of methods
Set Kµ of constraints for each method µ

output: A set of effects, Eµ, for each method µ
repeat1

foreach µ in M do2
foreach c = (invokes µ′ where θ) ∈ Kµ do3

if µ′ = µ and isExpanding(θ) then4
Kµ ← Kµ ∪ summarize(θ)(effects(Kµ))5

else6
Kµ ← Kµ ∪ θ(effects(Kµ′ ))7
foreach c′ = (invokes µ′′ where θ′) in Kµ′ do8

if µ′′ 6= µ′ or not isExpanding(θ′) then9
Kµ ← Kµ ∪ θ(c′)10

until no Kµ changes11
foreach µ in M do12

Eµ = effects(Kµ)13

Figure 10. The inference algorithm for RPLs.

Iteration 0 Iteration 1
Effects reads P:L, P:R writes P writes

P:L:*, P:R:*
Constraints invokes setMassForTree() where

{P 7→ P:L}, setMassForTree()
where {P 7→ P:R}

Figure 11. Effects and constraints inferred in
each iteration of Figure 10 for the method
setMassForTree in Figure 3.

3.3.2. Example. Figure 11 illustrates the constraints and
effects inferred by each iteration of the while loop in
lines 1–10 of Figure 10 for the method setMassForTree

in Figure 3. Iteration 0 lists the constraints and effects
as of line 2 in Figure 10. In iteration 1, the algorithm
detects the recursive invokes constraints with expanding
substitutions, appends stars to these two substitutions, and
applies the new substitutions on the effects discovered in
iteration 0 to get the two new effects of iteration 1. The
algorithm terminates after iteration 2 because it does not
find any new effects in the second iteration.

Note that even though the effect summary writes P:*
shown in Figure 3 is correct (i.e., it type-checks), DPJIZER

infers a more accurate (i.e., a more refined) summary. For



this program, DPJIZER infers writes P, P:L:*, P:R:*.
The effect writes P comes from the write access in line
8. writes P:L:* comes from the recursive function in line
11. DPJIZER recognizes the recursive traversal of the data
structure, and partially specifies the affected regions as
P:L:*. writes P:R:* comes from the recursive function
in line 13.

3.3.3. Termination and algorithmic complexity. The
algorithm terminates because the pruning of redundant
constraints (Section 3.3.1) ensures that no repeating RPL
can appear in an effect or constraint with a period longer
than the longest acyclic path in the call graph times
the longest RPL appearing on the right-hand side of a
substitution θ in the original constraint sets Kµ. The
length of such an RPL is bounded by the length of the
longest RPL appearing in the program text. Therefore,
again the total number of effects and constraints that can
be added to the Kµ is finite.

The algoritm is context-sensitive, so in some cases it
will enumerate several call paths between two functions.
While this could cause exponential complexity in the
worst case, this is not likely to be a problem for realistic
programs because it is very unlikely that the analysis will
generate distinct constraints on exponentially many call
paths. For each of the programs discussed in Section 5,
DPJIZER inferred the effects in less than one second.

3.4. Other DPJ Features

We now show how we extended the algorithm de-
scribed in Section 3.3 to handle the key remaining fea-
tures of DPJ: arrays, owner regions, and inheritance.

3.4.1. Arrays. DPJ provides two capabilities for com-
puting with arrays: array RPL elements and index-
parameterized arrays. An array RPL element is [e],
where e is an integer expression. Since array regions are
just RPL elements (e.g., Root:[e]:r), the algorithm can
handle them in exactly the same way as described for
name RPL elements. We just need a constraint collection
rule that says that if expression e uses a method-local
variable that is out of scope at the point of the method
prototype, then we replace the element [e] in any RPL
with [?], representing an unknown array index element
in the DPJ type system.

An index-parameterized array allows the programmer
to use an array index expression in the type of an indexed
element. For example, the programmer can specify that
the type of array index expression A[e] is C<[e]>. To
handle index-parameterized arrays, we just add constraint
generation rules for assignment and access through array
index expressions that are nearly identical to the rules for
field assignment and access shown in Figure 7. The rules

are also similar to the rules for array access typing shown
in [5].

3.4.2. Owner regions. DPJ provides a mechanism called
owner regions for recursively partitioning a flat data struc-
ture (such as an array) in a divide-and-conquer manner.
Figure 12 illustrates how to use owner regions to write
parallel quicksort. Here the class DPJArray wraps an
ordinary Java array and can be used to partition the array
into subranges, and class DPJPartition is used to split
the DPJArray into left and right segments segs.left

and segs.right, as shown in line 7.
In line 10, the type of segs.left

is segs:DPJPartition.Left, where
DPJPartitionLeft is a field region name (Section 2.1)
and the final local variable segs functions as an
RPL. When a variable appears as an RPL, the region
it represents is associated with the object reference
stored in the variable at runtime, as in ownership type
systems [6], [9]. The region of the variable is nested
under the region bound to the first parameter of the
variable’s type. Here, segs has type DPJPartition<P>,
so segs is nested under P. This fact allows us to write
the method effect summary writes P:* covering both
the write to P in line 6 and the recursive invocations of
sort in lines 10 and 12. Given this effect summary,
the compiler can use the inferred effects shown in lines
10 and 13 to prove that the statements in the cobegin

block are noninterfering.

1 class QSort<region P> {
2 final DPJArray<P> A in P;
3 QSort(DPJArray<R> A) pure { this.A = A; }
4 void sort() writes P:* {
5 /* Quicksort partition: writes P */
6 int p = qsPartition(A);
7 final DPJPartition<P> segs =
8 new DPJPartition<P>(A, p);
9 cobegin {

10 /* writes segs:DPJPartition.Left:* */
11 new QSort<segs:DPJPartition.Left>
12 (segs.left).sort();
13 /* writes segs:DPJPartition.Right:* */
14 new QSort<segs:DPJPartition.Right>
15 (segs.right).sort();
16 }
17 }
18 }

Figure 12. Using owner regions to write quicksort.

Figure 13 shows the syntax of Core DPJ extended to
support owner regions. Note that we have changed the
syntax of expressions in the following ways: (1) we add a
let construct to simulate final local variables; and (2)
we require the selector and actual argument of a method
invocation expression to be variables to keep the typing
rules simple.

Constraint generation works exactly as described in
Section 3.2.1 except for rules LET and INVOKE, shown in
Figure 14. In rule LET, we have to account for the fact that



Meaning Symbol Definition
Regions R Root | r | P | z | R : r | R : ∗

Expressions e let z = e in e | this.f | this.f = e |
z.m(z) | new C〈R〉 | z

Figure 13. Core DPJ with owner regions.

RPLs generated inside the let expression may contain
a local variable z that is not in scope outside the body
of the expression. Therefore, we coarsen any such RPL
z : R to R′ : ∗, where the type of z is C〈R′〉. Rule INVOKE

is nearly identical to the one shown in Figure 7, except
that we record the substitutions this 7→ z1 and x 7→ z2

as well as the substitution param(C) 7→ R. With these
changes, the solving algorithm works exactly as described
in Section 3.3.1.

(LET) Γ ` e1 : C〈R〉, K1 Γ ∪ {(x, T1)} ` e2 : T2, K2
θ = {x 7→ R : ∗}

Γ ` let x = e1 in e2 : θ(T2), θ(K1 ∪K2)

(INVOKE) {(z1, C〈R〉), (z2, T )} ⊆ Γ method(C, m) = µ
µ = Tr m(Tx x) { e′ }

θ = {param(C) 7→ R, this 7→ z1, x 7→ z2}
Γ ` z1.m(z2) : θ(Tr),K ∪ {invokes µ where θ }

Figure 14. Rules for generating constraints in Core
DPJ with owner regions.

3.4.3. Inheritance. The real DPJ language supports
inheritance, e.g., class B<P> extends A<R>. Inheri-
tance raises two issues for the inference algorithm. First,
we must translate inherited methods and fields from
the superclass to the subclass. We do this by applying
the translating substitution θ implied by the chain of
extends clauses from the superclass to the subclass. For
example, if class C1〈P1〉 extends C2〈R1〉, and C2〈P2〉
extends Object, then the translating substitution from
C2 to C1 is {P2 7→ R1}.

Second, DPJ requires that the declared effects of a
method include the effects of all overriding methods [5].
This gives rise to a constraint similar to the one we repre-
sented by an invokes constraint, except that it is simpler,
because there is no recursion in the inheritance graph. To
handle this constraint, we make two simple extensions
to the algorithm. First, in the constraint collection phase,
after collecting constraints from each method body, we
add to each Kµ the constraint isOverriddenBy µ′ where θ,
for each method µ′ such that µ is overridden by µ′. Here
θ is the translating substitution defined above. Second,
in the constraint solving phase, in each iteration of the
repeat loop in Figure 10, between lines 10 and 11,
we add another iteration over all methods µ ∈ M to
add θ(Kµ′) to Kµ for each constraint isOverriddenBy µ′

where θ in Kµ.

3.5. Applicability Beyond DPJ

The relevance of our effect inference algorithm is not
limited to DPJ: with suitable modifications, the algorithm
can be adapted to infer effects for other object-oriented
effect systems, such as ownership-based systems [6],
[10], [11], that have features similar to DPJ’s. Here we
illustrate how the inference algorithm might be adapted to
work on the ownership-based effect system by Clarke and
Drossopoulou called Java with Ownership and Effects, or
JOE [6].

JOE also employs method effect summaries and sup-
ports effects on regions similar to DPJ’s owner regions,
except that JOE has no RPLs. Instead, JOE uses effect
shapes of the form p.n and under p.n, where p is a
final local variable or context parameter (similar to a
DPJ region parameter), and n ≥ 0 is a natural number.
The shape p.n refers to all descendants of p in the region
tree that are n levels below p in the tree, with p.0 being
equivalent to p. The shape under p.n is similar to an
RPL with ∗ at the end and refers to all p.n′ such that
n′ ≥ n. The key rule of JOE, which defines the region
tree, is that if variable z has type C〈o〉, then the shape
z.n is covered by the shape o.n+1, where o = owner(z)
is the region bound to the owner parameter in the type
of z.

To adapt our algorithm to JOE, we make the following
modifications. First, instead of substitutions P 7→ R, we
use substitutions p.n 7→ p′.n + k, for k ≥ 0. Second, in
rule LET (Figure 14), when a variable z goes out of scope,
we generate an effect for the outer scope by applying the
substitution z.n 7→ o.n + 1, where o = owner(z). (We
could also replace z.n with under o, as our LET rule does
for DPJ, but this would be less precise in the context of
JOE.) Third, we define an expanding substitution to be
p.n 7→ p.n+k, for k > 0, and when we see an expanding
substitution, we replace its right-hand side with under
p.n + k. Otherwise, the algorithm works as described in
the previous sections.

1 class List<o> {
2 int data;
3 List<this> next;
4 void update(int data) writes this, under this+1 {
5 /* writes this */
6 this.data = data;
7 /* invokes update where {this.n 7→ this.n+1}*/
8 let z = next in
9 /* invokes update where {this.n 7→ z.n+0}*/

10 if (z != null) z.update(data);
11 }
12 }

Figure 15. Example of inferring effects for JOE.

Figure 15 shows how the algorithm infers effects for
a simple recursive JOE program. This code traverses and
updates a list such that each node of the list owns the next
node. The initial constraints gathered in the constraint



collecting phase are shown in the comments. Rule INVOKE

generates the effect in line 9, which is adjusted to the
effect in line 7 by the LET rule discussed above. At the
end of initial constraint collection, the constraints are as
shown in lines 5 and 7. In the first iteration of the solving
algorithm, the expanding substitution shown in line 7
gets summarized as this.n 7→ under this.n + 1.
Applying this substitution to the effect writes this and
putting the result back into the constraint set yields the
inferred effects shown in line 4. The algorithm then
terminates because there are no new effects to add.

4. The DPJIZER Tool

We have built an interactive tool, DPJIZER, as an Eclipse
plug-in, which incorporates the algorithm discussed in
Section 3. Given a partial DPJ program with legal region
annotations, DPJIZER produces a legal DPJ program with
region and effect annotations. In addition, the tool has
some valuable interactive features. A programmer can se-
lect an effect in a method summary and DPJIZER highlights
the statements or expressions that generated that effect
(as seen in the screen fragment in Fig. 16). Alternately,
the programmer can select a statement or expression, and
DPJIZER highlights its corresponding effect in the effect
summary. Thus, when the compiler reports interference
warnings, the developer can use DPJIZER to localize the
problem and refine the region annotations accordingly.

We now describe in more detail how DPJIZER helps
programmers write DPJ programs. Typically, a DPJ pro-
grammer carries out the following steps to convert a
given sequential Java program to DPJ. First, choose which
sections of code are to be run in parallel, but don’t yet
insert the parallel constructs (cobegin, foreach, etc.).
Second, devise a strategy for using region declarations,
region parameters, and RPLs to express the noninter-
ference of the parallel sections. Add these annotations
and make sure they pass the type checker. At this point,
the methods all have an empty summary, which in DPJ
means the most conservative effect, i.e., writes Root:*.
Such effect summaries will pass the type checker but
will not allow parallelism to be safely expressed. Third,
for methods transitively invoked by a parallel section,
refine the method summaries as necessary to make the
parallel tasks mutually noninterfering. Fourth, add the
parallel constructs to the parallel sections. Fifth, if there
are any interference warnings, then revisit steps two and
three to revise the region annotations and/or method effect
summaries to eliminate the interference.

DPJIZER helps this process in the following ways. First,
step three is completely automated. This automation
removes a lot of work from the development process,
particularly if the user has to do two or more iterations
of steps two and three. While the compiler provides

Figure 16. The programmer selects an effect in the
effect summary and DPJIZER highlights the state-
ment that generated that effect.

error information of the form “effect E is missing from
the summary of method m” that helps the user fix bad
summaries, step three is still time consuming and difficult.
In code with many methods and invocations, there are a
lot of summaries to write. Further, it is difficult for a user
to manually propagate effects backwards along the call
graph and around cycles. DPJIZER automates this process.

Second, DPJIZER helps step five by identifying the
statements and expressions within a method that are
contributing “bad” effects. A key part of this step is
understanding the statements and methods that contribute
these effects; the tool simplifies that greatly by allowing
users to map effects back to the expressions that produce
them, and vice versa. With additional programming (not
yet implemented for lack of time), the tool will also
help understand better how effects are propagated from
methods to call sites, along with the relevant substitutions
and how they propagate around cycles in the call graph,
in some cases leading to summarization with ’*’.

5. Evaluation

Research Questions. To evaluate the effectiveness of
DPJIZER, we answer the following two questions:
• Q1: Is DPJIZER useful? Does it alleviate the burden

of writing effect annotations?
• Q2: Is the inference accurate? What is the granular-

ity of the inferred effects?
We answer these questions in two ways: with a case

study running the tool ourselves, and with a survey in
which we asked other programmers who have written DPJ
programs to run the tool and describe their experience
using it. The case study (Section 5.1 provides quanti-
tative answers, while the survey (Section 5.2) provides
qualitative answers.

5.1. Case Study

5.1.1. Methodology. Table 1 lists the programs that we
used as case studies. These programs were manually
annotated with regions and effects by other programmers
before the existence of DPJIZER. We took these programs,
erased the effect annotations and left only the region
annotations, and we used DPJIZER to infer the method
effects.



Program SLOC Effects Inferred
by Programmer by DPJIZER

Barnes-Hut 682 46 145
IDEA 228 6 6
K-means 501 3 42
ListRanking 105 4 30
MergeSort 295 17 28
MonteCarlo 2877 38 273
QuadTree 117 11 28
QuickSort 144 12 13
StringMatching 373 61 60
SumReduce 57 3 12

Total 5379 201 637

Table 1. Programs used as case studies. Program
size is given in non-blank, non-comment lines of
source code, counted by sloccount. The last two
columns show the number of effects written by

programmers or inferred by DPJIZER.

To answer the first question (usefulness), we report
the number of effects that programmers wrote manually,
as well as the number of effects that DPJIZER inferred
automatically. To answer the second question (accuracy)
we compared the effects written manually with the effects
inferred by DPJIZER.

5.1.2. Quantitative Results.
Q1: Is DPJIZER useful? From Table 1 one can see that

if the programmers had used DPJIZER to infer the method
effects, they would have saved writing 201 effects. Fur-
ther, the programmers would have saved the time it
took to generate these effects by manually propagating
constraints backwards through the call graph, around
cycles, and up the inheritance graph.

Also, note that in some cases (e.g., Barnes-Hut,
KMeans), DPJIZER generated many more effects than the
programmers. This is because the programmers put in
effects only for methods that were transitively invoked in
a parallel construct. Because DPJIZER infers effects for all
methods in a program, these effects can serve for future
parallelization of new code fragments, thus encouraging
an incremental parallelization approach. In addition, a
programmer can look over the inferred effects to detect
patterns of data accesses.

Q2: Is the inference accurate? We carefully analyzed
the programs in Table 1 and compare the effects written
by programmers with the effects inferred automatically
by DPJIZER. Since programmers did not write effects for
all methods, as explained above, we can only compare
the effects for the methods that were annotated. Table 2
shows the number of inaccurate effects, i.e., effects that
are too coarse-grained in comparison with the effects
inferred by DPJIZER. Note that in all cases, DPJIZER infers
effects that are the same as, or more precise (i.e., finer-

grained) than, those written by the programmer: although
DPJIZER must be conservative, it is also quite accurate.
Programmers can be at least as accurate if they choose,
but sometimes choose to summarize effects, e.g., if they
think the coarser effects will not inhibit parallelism.

Table 2 shows three sources of inaccuracy in the
manually inferred effects. First, some of these effects are
too coarse-grained in the choice of effect keyword, e.g.,
writes R instead of reads R. This is legal (i.e., it type-
checks) but unnecessarily coarse and forbids the parallel
execution of two methods (e.g., two get() methods)
that only read region R and otherwise could have been
executed in parallel.

Second, some manually inferred effects are too coarse-
grained in the region specification. For example, the
programmer specified writes P:* when the appropriate
effect inferred by DPJIZER was writes P, P:L:*, P:R:*.
The coarser region inferred by programmer forbids any
other method that writes in a subregion of P to run in
parallel. This is an unnecessary restriction because the
method only writes in subregions created using the L or
R prefixes, so that another method that writes into P:M

should be allowed to run in parallel.
Third, some manually inferred effects are redundant.

For example, the programmer may specify reads R writes
R, but the read effect is subsumed by the write. Alter-
natively, the programmer inferred writes P, P:*, where
the first region is redundant since it is subsumed by the
second region. Such redundancies do not hinder paral-
lelism but make the method effect summary unnecessarily
verbose, which can hinder program understanding.

We carefully analyzed the source code of the methods,
and indeed DPJIZER inferred the most fine-grained effects
that are possible to express with the current DPJ language,
and the summaries do not contain redundant effects.

5.2. User Survey

We also conducted a preliminary survey of other pro-
grammers who have previously written DPJ programs.
This study took the following steps:

1) We elided the effect annotations on the programs
previously parallelized by these users, but retained
the region annotations they had inserted.

2) The users then used DPJizer to infer the effect
annotations for those programs.

3) The users finally filled out a brief questionnaire
asking about the results, usability and overall ex-
perience of using DPJIZER.

This study is limited because it only has a small number
of users and they all know the study authors. Never-
theless, it provides some preliminary feedback on the
usefulness of the tool from experienced DPJ programmers
not involved in designing or building DPJIZER (none of



Program # of Effects Too Coarse By # of Redundant
keyword region Effects

Barnes-Hut 1 0 3
IDEA 0 0 0
K-means 0 0 0
ListRanking 1 2 0
MergeSort 0 4 0
MonteCarlo 1 3 6
QuadTree 1 2 1
QuickSort 0 3 3
StringMatching 5 24 10
SumReduce 0 0 2

Total 9 38 25

Table 2. Number of inaccurate effects written by
programmers. We report effects that are too

coarse-grained by keyword (e.g., programmer wrote
writes R instead of reads R), by region (e.g.,

programmer wrote reads R:* instead of reads R).
Last column shows the number of redundant effects

(e.g., programmer wrote both reads R writes R).

them had seen or even participated in discussions about
the tool before the survey).

Usefulness. The users said the tool saved “a signif-
icant fraction” of porting effort. One user said the tool
saved “a lot of time in the process of writing/adding
annotations . . . and then compile to find more methods
to annotate.”

Accuracy. One user thought the tool inferred too
many annotations: he would prefer to see fewer effect
annotations, and could re-run the tool if more were
needed. Conversely, he said the tool did help eliminate
some redundant annotations (compared with his manual
effect summaries).

Requested features. The most requested features
included incremental addition of annotations; presenting
choices of annotations to the user and letting him choose;
and recommend better region structure to produce more
fine-grain effects. (The latter is outside the scope of the
current work but is a subject of future work, as described
in Section 7.)

Summary. Overall, all users said that they would
use DPJIZER to help write DPJ programs. One user said “I
think it will also help me redesign region structures to be
more precise and effective.”

6. Related Work

Method effect summaries. Many effect systems em-
ploy effect summaries to enable modular analysis and
composability of program components. The original pro-
posals for an object-oriented effect system [3], [12]
use summaries, as do several systems combining object
ownership with some form of effects [6], [11], [13]. Our

work presents an algorithm and tool that can be used to
infer such summaries.

Effect inference. The seminal work on inferring effects
is from Jouvelot and Gifford [14]. They use a technique
called algebraic reconstruction to infer types and effects
in a mostly functional language. Talpin and Jouvelot [15]
build on this work to develop a constraint-based solving
algorithm. These algorithms are tailored to a mostly-
functional language with a much simpler effect system
than DPJ’s: nested effects cannot be expressed, so no
summaries such as R : ∗ have to be inferred.

Bierman and Parkinson [16] present an inference algo-
rithm for Greenhouse and Boyland’s effect system [3].
The features they consider are similar to the smallest
subset of Core DPJ we covered in section 3.1, plus
support for unique reference annotations and a limited
form of nesting. Again there is no unbounded nesting.

Side-effect analysis [17]–[20] uses interprocedural
alias analysis and dataflow propagation algorithms to
compute the side effects of functions. There are two
major differences between these algorithms and DPJizer.
First, DPJizer operates on programmer-specified region
types, which identify and express effects more precisely
than alias analysis. Second, DPJizer exploits the structure
of RPLs to do a custom solution for recursive calls,
which should significantly speed up convergence of the
constraint solver.

Commutativity analysis [21] uses symbolic execution
to collect the side effects of methods and reason about
which pairs of methods commute with each other. The
analysis is fully automatic, but less expressive than DPJ,
because programs must be written in a certain restricted
style in order for the analysis to work.

Region and type inference. There is extensive lit-
erature on region inference for region-based memory
management [22]–[25]. Several researchers have studied
the problem of inferring types or type qualifiers for
imperative programs with references. Kiezun et al. [26]
show how to infer Java generic parameters and arguments.
Agarwal and Stoller show how to do type inference for
parameterized race-free Java [27]. Quinonez et al. [28]
present a tool called Javarifier for inferring reference
immutability for variables (i.e., that the reference is never
used to update the state of any object that it transitively
points to). Terauchi and Aiken [29] present a type infer-
ence algorithm for deterministic parallelism using linear
types supplemented with fractional permissions [30].

These algorithms are broadly similar to ours, in that
they collect constraints across the whole program and
solve them. However, the technical details are quite
different because the problem domains differ from our
problem of inferring effects for nested regions. The region
and type inference techniques may be useful in extending
DPJIZER to infer DPJ region annotations.



7. Conclusions

We have presented an effect inference algorithm and
a tool, DPJIZER, that ease the burden of writing DPJ
programs. The DPJIZER algorithm is also applicable to other
effect systems that rely on method effect summaries.
As future work, we plan to extend the capabilities of
DPJIZER so that it can help with region inference, i.e., in-
ferring region declarations, region parameters, and region
arguments. Region inference in DPJ is challenging, but
preliminary work indicates that it should be possible to
infer regions for many common parallel patterns.
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