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Abstract

Production refactoring tools are complex and time-consuming to build, often requiring

tens to hundreds of thousands of lines of hand-written code. The proposed thesis will

suggest several techniques which can expedite the process of building a refactoring tool

for a new language. Many of a tool’s infrastructural components can be encapsulated in

frameworks, libraries, and code generators, allowing the developer to focus on building

analyses and refactorings rather than infrastructure. But it is also possible to reduce the

implementation cost and improve the correctness of refactorings themselves through

the use of a language-agnostic precondition checking engine.

One part of the proposed thesis will address syntactic aspects of refactoring,

suggesting that a grammar can be used to generate not only a parser but also a

preprocessor-aware, syntactic rewriting infrastructure. A concise set of grammar

annotations is proposed which allows the structure of an abstract syntax tree to be

specified in a grammar. A tool can then generate both a parser and a fully rewritable

abstract syntax tree which can be used to manipulate source code while preserving

every aspect of the original source code, including spacing and comments. Moreover,

the generated infrastructure can support C preprocessor directives in the language, even

if the language is not C or C++.

The second part of the thesis will address the semantic aspects of refactoring,

proposing a new architecture for refactoring engines in which the refactoring engine

maintains a model of certain aspects of the program’s semantics, and the sequence of

changes applied to the abstract syntax tree is used to define an equivalence class among

semantic models. Rather than attempting to check an exhaustive set of preconditions,

the program transformations can be performed, and the semantic models of the original

and transformed programs can be tested for equivalence to determine whether or not

the transformation is a valid refactoring. This semantic model can be easily extended

to include preprocessor directives as well. One instantiation of this architecture will be

investigated in detail, along with its advantages, disadvantages, and applicability.

As proofs of concept, these techniques are being used to develop the refactoring

engines in Photran, an Eclipse-based IDE and refactoring tool for Fortran, and Ludwig,

a lexer/parser/AST generator, as well as a prototype refactoring tool for Lua, a

dynamically-typed scripting language.
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Introduction

1. The Problem

Reuse is commonBuilding a production-quality refactoring tool generally requires a substantial amount

of infrastructure—often tens to hundreds of thousands of lines of code—and so

attempts to reuse components are common. Refactoring support in Apple Xcode

3.0 was built using a stock C/C++/Objective-C parser and used Xcode’s snapshot

feature to support multi-file undo [18]. Refactoring support in NetBeans is based on

the front end from Sun’s javac compiler [17]. The JastAddJ compiler was similarly

modified to support refactoring [101]. Peter Sommerlad’s group at the Institute

for Software [60] has successfully added refactoring support onto Eclipse IDEs for

C/C++ [52], Ruby [30], Python, and Groovy [68] by extending their existing language

infrastructures and using the Eclipse Language Toolkit (LTK) to provide the GUI.

Xrefactory adds C/C++ refactoring support to Emacs based on a front end from the

Edison Design Group [113].
Reuse impacts

architecture
Of course, creating a refactoring tool by gluing together stock components and

custom infrastructure has ramifications. It can clearly impact the internals of the

tool (say, when code quality is compromised as refactoring-specific concerns are

hacked onto components that were never intended to support them), but reuse can

also have more visible effects. For example, the refactorings in the Eclipse C/C++

Development Tools (CDT) support only a single configuration of the C preprocessor,

so if one block of code is guarded by #ifdef WIN32 and another by #ifdef LINUX,

it will only refactor one of them. This is directly attributable to the fact that the

CDT’s language infrastructure was designed to support only a single preprocessor

configuration (indeed, that is acceptable for most IDE functionality); modifying it to

support multiple configurations was estimated to require at least eight person-months

of effort [95].
Reuse is not always

possible
Unfortunately, it is not always possible to reuse stock components in a refactoring

tool. Sometimes this is due to licensing issues. Sometimes this is due to technical

issues. For example, if a parser outputs a lowered program representation like

three-address code, it can be difficult or impossible to map elements of the lowered

representation back to positions in source code, limiting its usefulness in a refactoring

tool. Similarly, if code must be preprocessed before it is parsed, it may be difficult or

impossible to correlate the parser’s output with locations in the unpreprocessed source

code.
Reuse is ad hocPerhaps the bigger problem, though, is that no serious attempt has been made

to reuse components among refactoring tools. In each of the tools described above,

components were reused from compilers or IDEs; the decision about what to reuse was

based on what happened to be available for their particular language. A substantial

effort was still required to add refactoring-specific functionality onto the existing
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infrastructural components.
Infrastructure demands

are high
This problem is exacerbated when few or no components can be reused from

existing tools. This can often mean that the programmer must implement tens of

thousands of lines of infrastructure before he can even begin writing actual refactorings.
Better reuse is possibleThe proposed dissertation will identify several ways in which commonality among

refactoring tools can be exploited. The end result will be not only a suite of “tools for

building refactoring tools,” but also several architectural and algorithmic advances that

can make refactoring tools easier to build in general.

2. Background

Architectural Forces: Refactoring Engines vs. Compilers

Refactoring engine ,

compiler

In the next subsection, we will describe a typical architecture for refactoring tools.

Many of the forces driving this architecture derive from the (obvious) fact that a

refactoring tool is not a compiler. There is some commonality between refactoring

tools and compilers, but there are also significant differences.
The user owns the

refactored code
Ultimately, a refactoring tool must modify the user’s source code, and the user will

maintain the refactored code. So a refactoring cannot just prettyprint an AST, ruining

the user’s formatting. It cannot even remove comments. And it certainly cannot lower

the representation and output a semantically equivalent but visually dissimilar program.
No lowered

representation
Thus, the primary program representation in a refactoring tool is always one that

can be mapped directly to the user’s source code. This is usually an abstract syntax tree.

And, generally speaking, all analyses and transformations must be done directly on the

AST. (Contrast this with a compiler, where analysis and transformation are generally

done on a much simpler intermediate form.)
No preprocessingFurthermore, in languages like C, C++, C#, and Fortran, the user’s code is

generally run through a preprocessor before a compiler ever sees it. However, since

a refactoring tool must modify the user’s source code, it must be able to parse, analyze,

and transform code with embedded preprocessor directives.
Easy but program-wide

transformations
Another major difference between refactoring tools and compilers are the types of

transformations that are performed. Most compiler optimizations are highly nontrivial,

intraprocedural transformations. Refactoring transformations tend to be much simpler,

but they are oriented at design-level constructs—methods, fields, classes, etc.—and

tend to require potentially program-wide analysis and transformation.
Interactivity relaxes

requirements
Finally, refactoring tools are interactive. First, this means that analyses do not

have to be completely conservative, and transformations do not have to be completely

accurate; often it is acceptable for the tool to make a “guess” then ask the user to

visually inspect the result. Second, the user decides what refactoring to invoke and can

provide input, so there is generally no need for the tool to estimate the profitability of its

transformations; that responsibility has been transferred to the user. Finally, there are

speed considerations. Users generally refactor much less frequently than they compile,

so refactorings can be slower than typical compiler transformations, as long as they are

reasonably so. However, more expensive compiler optimizations (intended to be used

only during automated, overnight builds) can arguably be slower than refactorings,

since they are not intended to be run in “interactive time.”

The Architecture of Refactoring Engines

Relaxed layered

architecture

Figure 1 illustrates the architecture of a typical refactoring tool, biased somewhat

toward the design of the Eclipse Java and C/C++ Development Tools (JDT and CDT,

respectively). The architecture follows the relaxed layered model [20, p. 45], where

each layer generally depends on several of the layers below it.
AST is critical
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User Interface

Refactorings

Preconditions

AST

Source 

Rewriter

Database

Semantic 

Analyses

UI Framework

Parser & Lexer

(Pseudo-)preprocessor

(Tests)

(Test Framework)

Figure 1: Architecture of a typical refactoring tool. Components that can be

implemented generically, accoording to the proposed dissertation, are shown in solid

gray if they can be implemented in a library or framework and in a gray-white gradient

if they can be implemented in a code generator. Testing packages are also shown to

emphasize that, although they are not technically part of the architecture, they are an

essential part of such a tool.

The bottommost tiers consists of the abstract syntax tree (AST) and the machinery

needed to construct it: the lexer, parser, and (if applicable) preprocessor. The AST

plays a critical role in a refactoring tool, as virtually every other component depends

on it and makes assumptions about its structure.1 Clearly, the AST must be used in

analysis and precondition checking. But many refactoring tools also use the AST for

source code transformation, effectively adding, deleting, moving, or modifying nodes

in order to make changes to source code.

When a language must be preprocessed before it can be parsed, some information

about the effects of preprocessing must be included in the AST in order to refactor
Pseudo-preprocessingsuccessfully. For example, it is often necessary to know which AST nodes originated

from #include directives in the original code. This requires additional information to

be passed from the preprocessor to the lexer and parser; otherwise the preprocessor

behaves exactly as it would for a compiler. However, correctly handling conditional

compilation (#if) directives requires substantial changes to the preprocessor’s behavior

(discussed later); Garrido [48] calls the resulting tool a pseudo-preprocessor.
Choice of semantic

analyses varies
1This is analogous to a three-tier Web application, where the data access tier is at the bottom, and changes

to the database schema tend to ripple through the data access and business logic tiers as assumptions about

the data model change.
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Immediately above the AST is a suite of semantic analyses. Exactly what analyses

are implemented depend on what refactorings are implemented. Rename and Move, for

example, require only name binding analysis; Extract Method requires some level of

flow analysis; and loop transformations require array dependence analysis. The choice

of analyses can also depend on the language being refactored. For example, Extract

Local Variable requires type checking in a statically-typed language but not in one that

is dynamically typed; and Extract Method can be implemented without flow analysis

if the language supports pass-by-reference.
Large projects require a

cross-reference database
When the refactoring tool will operate on large projects, often some semantic

analysis information must be saved to disk in order to achieve reasonable performance.

For example, renaming a method requires knowing the all of the call sites of that

method and of any methods that override it; most tools choose to save this information

(or some approximation thereof), based on the observation that (1) the brute-force

approach of parsing and analyzing every file in the project while the user waits on

the refactoring to complete would be prohibitively expensive, and (2) in a million-line

project, most of the files will likely not call that method anyway. In an IDE, the cross-

reference database can be updated incrementally as the user edits individual files, so

maintaining this database need not affect the tool’s responsiveness.
Preconditions, source

rewriting,

transformations, UI

The remaining components support refactoring more directly. There is a suite of

precondition checks which are common among several refactorings. A source rewriter

maps AST transformations to textual (offset/length) transformations, accounting for

comments and reindentation. And the topmost layer is, of course, the user interface,

which for convenience is generally integrated into an IDE or text editor.

3. The Solution

Libraries, Frameworks, & Code Generators

Most of the components in a refactoring tool need not be implemented by hand.

Specifically, in Figure 1, the components shown in solid gray can be implemented in a

library or framework, and those shown in a gray-white gradient can be implemented in

a code generator.
Reduced infrastructure

cost
Libraries, frameworks, and code generators can provide several advantages. The

most obvious is that they can reduce the amount of code that must be written and thus

reduce development time. However, by reducing the amount of new code that must be

written, they can also increase reliability. In the end, they should allow the developer

to focus on the “interesting” parts of the implementation rather than tedious, mundane,

or routine support code.
Focus on analysis and

transformation
And that is what we want to achieve with regard to refactoring engines. Arguably,

the “interesting” parts of a refactoring tool—the parts where a developer would expect

to expend the most effort—are the analyses, refactorings, and the corresponding tests

and UI components. Notice that, in Figure 1, these are exactly the components that are

left entirely to the developer; all of the infrastructural components can be implemented

in libraries, frameworks, or code generators.
Lex/Yacc, LTK,

TestOrrery
For several of these components, this is possible with existing technology. Lexer

and parser generators existed as early as the 1960s [63]. AST generators also

exist, although they are less commonly used. One example of the “UI Framework”

component is Eclipse, a framework for building integrated development environments,

extended with the Language Toolkit (LTK), which provides (among other things) a

wizard-based interface for refactoring, including a diff -like GUI for previewing the

changes that will result. The best example of the “Test Framework” component is the

JUnit unit testing framework [4] extended with TestOrrery [6], a library for bounded-

exhaustive test data generation. By using TestOrrery to produce Java ASTs, this
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framework was used to build ASTGen [2], a system used to test and expose several

bugs in the Eclipse JDT and NetBeans’ refactorings for Java [32, 47].
Database, rewriter,

preprocessor
On the other hand, it is less clear that the program database, source rewriter, and

(pseudo-)preprocessor can be implemented in a truly language-independent fashion, as

these three components all depend heavily on the language being refactored. Clearly,

there could be some commonality among refactoring tools for similar languages (say, C

and Fortran, or Java and C#). This is less obvious if the languages are, say, Fortran, Lua

(a dynamically-typed scripting language), and EBNF grammars. Finding commonality

in these components among such diverse languages is exactly what the proposed

dissertation will address.
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Proposal

1. Overview

The proposed thesis will focus on three major topics. (A detailed list of contributions

appears in Figure 3.)
1. Generating

rewritable ASTs
First, it will show that it is possible to generate an AST-based, syntactic rewriting

infrastructure from a BNF or EBNF grammar. The grammar is annotated using a

concise set of six annotations which describe the structure of an abstract syntax tree.

A tool can then generate both a parser and a rewritable AST which can be used

to manipulate source code while preserving every aspect of the code’s formatting,

including spacing and comments.
2. Universal precondition

checking
The second part of the proposed research will propose that refactorings need

not check an exhaustive set of preconditions a priori. Instead, the programmer can

simply transform an AST, indicating what analyses should be preserved after the

transformation has been applied, and the refactoring engine can determine whether that

actually happens. The thesis will describe a specific algorithm (“universal precondition

checking”) and a language-independent library, called the virtual program graph

(VPG), which implements this algorithm at scale while also providing a cross-reference

database and indexing infrastructure.
3. C preprocessor supportThe third and final part of the dissertation will discuss what is needed to support C

preprocessor directives in the language being refactored, even if the language is not C

or C++. The most challenging aspect is illustrated in Figure 2, where the conditional

(#ifdef) directive splits a statement; any naïve approach (like treating preprocesor

directives as comments) will fail to parse this, and “normal” preprocessing would

ignore all but one arm of the conditional, which is generally insufficient for refactoring.

The proposed research will describe a mechanism whereby any LR(1) parser can be

modified to parse code with embedded conditional directives; it will also describe how

to subsequently incorporate preprocessing directives into ASTs and the VPG.

printf("You are running "

#ifdef WIN32

"Windows"

#else

"%s", run_command("uname -s")

#endif

);

Figure 2: Example of an incomplete conditional.
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Contributions

Generating Rewritable ASTs

1. A new set of annotations for specifying AST structure in a grammar, and a

method for augmenting these ASTs with concrete syntax so that they can be

used for source code rewriting

2. A formalization of the AST generation algorithm, including constraints that

an annotated grammar must satisfy for AST generation to succeed and

proofs of several safety properties

Universal Precondition Checking & VPG

3. The notion that many preconditions can be specified (or verified) by

expressing analysis preservation requirements during the transformation,

and then checking whether the preservation was satisfied, and an

algorithm for doing so (“universal precondition checking”) using a program

representation based on the program graph semantic model

4. A scalable implementation of a universal precondition checking library

5. Specifications of several common refactorings using this model

Language-agnostic Pseudo-preprocessing

6. An algorithm for language-agnostic conditional completion in LR(1) parsers

7. Mechanisms for integrating pseudo-preprocessing with generated ASTs

8. A strategy for representing preprocessor directives in a program graph and

including them in universal precondition checking

Figure 3: Contributions of the proposed thesis.
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2. Generating Rewritable Abstract Syntax Trees

Two contributionsThe first part of the thesis will expound the idea that a BNF or EBNF grammar can be

annotated and used to generate an AST-based syntactic rewriting infrastructure. It will

make two contributions:

1. A new set of annotations for specifying AST structure in a grammar, suitable for

generating a syntactic rewriting infrastructure; and

2. A formalization of the AST generation algorithm, including constraints that an

annotated grammar must satisfy for AST generation to succeed and proofs of

several safety properties.

Annotations in [91]This work is, for the most part, complete. A paper presenting the grammar

annotations and an overview of how they are used to generate a rewriting infrastructure

was presented in the First International Conference on Software Language Engineer-

ing [91]. It describes the grammar annotations in detail, provides a link to our reference

implementation (Ludwig), and briefly describes our experience implementing the

refactoring engine in Photran, a refactoring tool for Fortran. An example of an

annotated grammar appears below in Figure 4.
Purpose of formalizationThe formalization is mostly complete and serves as the basis of the implementation

in Ludwig, but it has not yet been published. An outline appears in Figure 6. The

purpose of formalizing the AST construction is to address the fact that there are some

combinations of annotations that do not “make sense” or that lead to ambiguities in

the (static or dynamic) structure of the AST. A simple example is shown in Figure 5:

The generated IfStmtNode contains only one member for a statement, and it is not clear

whether this should represent the then-statement or the else-statement. Formalizing the

AST construction will allow us to establish sufficient criteria to guarantee that cases

like this will not occur, i.e., to guarantee that every program that can be parsed will

also have a unique AST representation.

Annotated grammar: Generated AST node class:

‹ if-stmt ›F

 ‹ expr › 

thenStmt
︷ ︸︸ ︷

‹ stmt › 

|  ‹ expr › 

thenStmt
︷ ︸︸ ︷

‹ stmt › 

elseStmt
︷ ︸︸ ︷

‹ stmt › 

class IfStmtNode {

public ExprNode expr;

public StmtNode thenStmt;

public StmtNode elseStmt;

}

Figure 4: Example of generating an AST node from an annotated grammar. A single

IfStmtNode class is generated, corresponding to the ‹ if-stmt › nonterminal on the left-

hand side of theF symbol. The symbols on the right-hand side correspond to fields

in this class. The labels “thenStmt” and “elseStmt” assign the AST nodes for the two

‹stmt › nonterminals to fields with those names. Terminal symbols that are struck out

indicate that the corresponding tokens can be omitted from the AST.

Annotated grammar: Generated AST node class:

‹ if-stmt ›F

 ‹ expr ›  ‹ stmt ›  ‹ stmt › 

class IfStmtNode {

public ExprNode expr;

public StmtNode stmt;

}

Figure 5: Example of an ill-defined annotated grammar. Cf. Fig. 4.
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1. Formally define an annotated grammar (similar to the definition of a context-

free grammar).

2. Given an annotated grammar, define what AST node classes will be

generated and the inheritance relationship among these classes.

3. Establish criteria sufficient to guarantee (1) that every symbol in the

grammar corresponds to exactly one concrete AST node class, and (2) that

the inheritance relationship among these classes is valid.

4. Define the members of each AST node class.

5. Establish criteria sufficient to guarantee that every class member has a

unique type and visibility and that its name is unique within the class.

6. Define an attribute grammar which describes how ASTs are built from the

generated classes at parse time.

7. Prove that (1) this grammar is S-attributed, (2) it only instantiates concrete

node classes, (3) assignments to node members are valid (well-typed),

(4) each node member is assigned at most once, (5) all tokens are present

in the AST, and (6) the original ordering of the tokens is preserved in the

AST.

Figure 6: Outline of the formalization of the AST construction

3. Universal Precondition Checking & VPG

Three contributionsThe second part of the thesis will make three contributions:

1. The notion that many preconditions can be specified (or verified) by expressing

analysis preservation requirements during the transformation, and then checking

whether the preservation was satisfied, and an algorithm for doing so (“universal

precondition checking”) using a program representation based on the program

graph semantic model

2. A scalable implementation of a universal precondition checking library

3. Specifications of several common refactorings using this model

3.1 Preconditions and Analysis Preservation

Refactoring =

preconditions +

transformation

Generally, refactorings proceed in four steps.

1. Check initial preconditions. Initial preconditions are usually very inexpensive

checks to ensure that the most basic criteria for applying the refactoring have

been met. For example, the file to refactor must be writable, and the user’s

cursor may need to be placed on a particular construct in the program.

2. Request user input.

3. Check final preconditions. Final precondition checks validate the user input

and then perform any program analyses necessary to (attempt to) guarantee that

transforming the program will preserve the behavior of the original program.

4. Modify the source code.

10



Compilability &

preservation

When specifying or implementing a refactoring, the most difficult part is final

precondition checking: attempting to guarantee that the transformation will preserve

the behavior of the original program. Generally, this means ensuring (1) that the

refactored program will still compile after it has been transformed (compilability), and

(2) that a particular program analysis will be preserved (preservation).
ExampleOne nontrivial example is the Extract Method refactoring, where the user selects a

sequence of statements, and they are moved into a new method and replaced with a call

to that method. Two critical parts of precondition checking are (1) ensuring that the

statements do not include a return statement or a goto referencing a label outside the

selection, and (2) ensuring that the effects of any variable assignments are propagated

back from the extracted method. Stated in terms of analysis preservation, these are

attempting to guarantee that the control flow and du-chains, both into and out of the

original statement block, are preserved when it is replaced with the method call.
Transform, then checkIn practice, refactoring tools generally try to determine whether analyses will

be preserved before they transform the AST. However, it has been observed in the

literature that it is possible to simply transform the AST and then determine whether or

not analyses were preserved. This after-the-fact checking is used in some dependence-

based program transformations for parallelization [112, 65] and was also used in

Griswold’s restructurer [53]. We will refer to this alternative as a posteriori checking,

and we will use a priori precondition checking to refer to the more common alternative

where the checking is completely done before transforming the AST.
Advantages of a

posteriori checking
The main advantage of a posteriori checking is that it makes it easier to ensure that

every case has been covered. Consider preserving control flow in the Extract Method

example above. A posteriori checking is easy: One must simply verify that the two

flow graphs are isomorphic. On the other hand, checking for control flow preservation

a priori means explicitly checking for return statements, certain goto statements, and

any other construct that could cause the control flow graph to deviate.
Goal: generic a

posteriori checking
The proposed research will capitalize on the idea of a posteriori checking by

proposing a generic way to check whether an AST preserves certain program analyses,

regardless of what language the AST represents and regardless of what the program

analyses are. To achieve this, we will use a variation on a semantic model known as a

program graph.

3.2 Program Graphs

Program graphA program graph “may be viewed, in broad lines, as an abstract syntax tree augmented

by extra edges” [81, p. 253]. These “extra edges” represent semantic information, such

as variable scopes and bindings, control flow, inheritance relationships, and so forth.
AST-based semantic

analyses
Unlike a compiler, where the AST, symbol table, and control flow graph are usually

separate data structures, a program graph combines all such information into a single

data structure. In a program graph, there are no symbol tables; rather, some nodes in

the AST correspond to declarations, and references contain an edge pointing to their

declaration. Scopes can similarly be represented by AST nodes; symbols can point to

the scope in which they are defined. The control flow successors of a node are other

AST nodes. A variable’s du-chains would likely consist of AST nodes representing

assignment statements and variable-use expressions. And so forth. In other words, in a

program graph, all program analyses are stated in terms of AST nodes.
SuperimpositionAlternatively, one might think of a program graph as an AST with the graph

structures of a control flow graph, program dependence graph, du-chains, etc. “su-

perimposed” [108]. The nodes of the AST also serve as nodes of the various graph

structures; the edges connecting them are different.
Example in Fig. 7An example of a Java program and a plausible program graph representation are

shown in Figure 7. The underlying abstract syntax tree is shown in outline form; the
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dotted lines are the extra edges that make the AST a program graph. We have shown

four types of edges. Scope edges link a declaration to the class or method in which it

is defined. Binding edges link the use of an identifier to its corresponding declaration.

Within the method body, control flow edges form the (intraprocedural) control flow

graph; the method declaration node is used as the entry block and null as the exit

block. Similarly, there are two du-chains, given by def-use edges.
Language-neutral,

combined representation
The advantages of the program graph representation are twofold. First, it is generic

enough that it a program graph can be built to represent virtually any conventional

programming language. Every program has a syntax which can be represented as

a syntax tree, and we hypothesize that the semantics needed to perform common

refactorings can be represented as extra edges (and node annotations) on this tree. The

second advantage of the program graph is that it summarizes the “interesting” aspects

of both the syntax and semantics of a program in a single representation, obviating the

need to maintain a mapping between several distinct representations.

3.3 Universal Precondition Checking

In addition to the advantages above, we claim that using a program graph-based

program representation for refactoring has another advantage: It can serve as the basis

for a language-agnostic, a posteriori precondition checking algorithm we call universal

precondition checking.2

Universal checking is predicated on the idea that refactoring transformations can be

described in terms of five primitive transformations, specifying what program analyses

(i.e., what types of extra edges in a program graph) should be preserved across these

transformations. We will first describe these primitive transformations; then we will

describe what it means to preserve a program transformation across a transformation.

Finally, we will use the Extract Method refactoring on a Java program to illustrate the

definitions concretely.

3.3.1 Primitive AST Transformations

5 primitivesThe AST transformations in most refactorings tend to be relatively straightforward. We

hypothesize that most refactoring transformations can be described as a composition

of the following five primitive operations:

• Add (α). A new subtree is inserted into the AST.

• Eliminate (ǫ). A subtree is deleted from the AST.

• Replace (ρ). A subtree of the AST is replaced with a different subtree.

• Move (µ). A subtree of the AST is deleted, and re-inserted at a different location.

• Copy (κ). A subtree of the AST is copied to a different location.

3.3.2 Analysis Preservation Across Primitive Transformations

Analysis preservation =

edge preservation

When we transform an AST—i.e., when we add a node, replace a node, etc.—we want

to be able to specify which program analyses should be preserved. In the context of

a program graph, this means specifying which types of extra edges should (or should

not) be present in a program graph before and after the transformation.
Def. boundary-crossing

edge
Our definition of edge preservation will be based on the notion of a boundary-

crossing edge. Given a subtree T in the AST underlying a program graph, an extra

2Such a name is admittedly over-optimistic but captures the essential idea that it can serve as the

fundamental precondition checking mechanism for many refactorings in many languages—even refactorings

and languages that have not yet been invented.
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edge in the program graph is boundary-crossing relative to T iff either (1) it has a

source in T and a sink outside T , or (2) it has a sink in T and a source outside T .
Def. e-preservationNow suppose we want to preserve edges of type e. We will let T and T ′ denote the

abstract syntax tree before and after transformation, respectively. We will say that each

primitive transformation is e-preserving iff the following hold:

• Add (α). There are no boundary-crossing edges of type e relative to the added

subtree in T ′.

• Eliminate (ǫ). There are no boundary-crossing edges of type e relative to the

deleted subtree in T .

• Replace (ρ), Move (µ), Copy (κ). The boundary-crossing edges of type

e relative to the replaced subtree in T are in 1–1 correspondence with the

boundary-crossing edges of type e in the replacement subtree in T ′.

IntuitionIntuitively, we are trying to capture the idea that, if we want to substitute one subtree

with a different subtree that supposedly does the same thing, then all of the edges that

extended into the old subtree should also extend into the new subtree, and all of the

edges that emanated from the old subtree should also emanate from the new subtree.

In a sense, the old subtree and the new subtree should interface with their surroundings

in the same way.
ApproximationNote that this is an approximation of semantic preservation. Our definition

places no constraints on edges that are entirely contained inside the affected subtree.

Moreover, for ρ, µ, and κ, the boundary-crossing edges must be in 1–1 correspondence,

but the definition places no constraints on what nodes in the subtree those edges point

to.

3.3.3 Example: Extract Method

Example: Figs. 7–10To provide a concrete illustration, we will use an example Java program based on the

second Extract Method benchmark from the C2 Wiki [96]. The Java program and a

corresponding program graph are shown in Figure 7; the underlying abstract syntax

tree is shown in outline (tabular) form to conserve space. Suppose we want to apply

the Extract Method refactoring to the two statements “i++; field++;.” The code that

should result after the refactoring has been applied is shown in Figure 8 along with

its corresponding program graph. Note that the local variable i must be passed and

returned in order to preserve the meaning of the original program.
Flow-preserving

ρ-operation
As discussed earlier, the most important preconditions in Extract Method ensure the

preservation of control flow and du-chains when the original statements are replaced

with the method call. In our example, this is a Replace (ρ) operation that should

preserve control flow and def-use edges in the program graph.
Boundary-crossing edges

adjusted
Figure 9 shows the original program from Figure 7 again, but the statements/subtree

to be extracted have been circled and shaded. The boundary-crossing edges have

been adjusted: The circled subtree is treated as an endpoint, rather than particular

nodes within that tree, and all of the edges entirely contained within the subtree have

been removed. (This will make it easier to check for a 1–1 correspondence between

boundary-crossing edges.) Furthermore, we have only marked control-flow and def-

use edges since those are the only edges we are interested in preserving. Thus,

the only edges shown in the figure are those that must be preserved across the ρ-

operation. Likewise, Figure 10 shows the refactored program from Figure 8 again, but

the replacement statement/subtree has been circled and shaded, the boundary-crossing

edges have been adjusted, and only control-flow and def-use edges have been marked.
1–1 = ρ-preservationObserve that the extra edges in the program graphs in Figures 9 and 10 are in 1–

1 correspondence, meeting our definition of edge preservation across a ρ-operation.
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Thus, this operation “preserved meaning” as intended, and so the refactoring can be

allowed to commit.
Erroneous conditionsOne can also verify that this test would have caught several erroneous conditions.

For example, suppose the extracted statements contained a return statement; then the

control flow edge from that statement would have been omitted from the refactored

program’s program graph. Or suppose the refactoring was buggy and did not assign

the variable i; then the def-use edges would not have been in 1–1 correspondence.

3.3.4 Operation of a Universal Precondition Checker

Compilability &

preservation

Recall that most preconditions are intended to ensure compilability and analysis

preservation. Testing for edge preservation in a program graph covers the latter, but by

incorporating this into an appropriate architectural design, a test for the former comes

almost “for free.”
Front-end checks verify

compilability
A refactoring tool generally performs the same types of front-end checks that a

compiler would. For example, if a program contained two subroutines with the same

name, this would be detected in the process of constructing name-binding edges in a

program graph. Or if a goto statement referenced a nonexistent label, this would be

detected while constructing control flow edges. This can be used to our advantage: By

re-running these front-end analyses on the refactored program, we can use these checks

to verify that the refactored program will still compile.
Operation of a universal

engine
By combining this idea with the idea of edge preservation in a program graph,

we can propose the following (unorthodox) operation for a refactoring engine. (If the

source code cannot be parsed in Step 1 or 4, or if there are errors detected during

the static analysis in Step 2 or 5, then an error must be reported to the user, and the

refactoring cannot proceed.)

1. A parser parses the source code, producing an initial AST.

2. Static analyses are performed on the initial AST, producing a model of the

program’s semantics (the initial model). Our algorithm will assume that this

model is a program graph.

3. A sequence of primitive operations are performed, transforming the initial AST

into a modified AST.

4. Source code is generated from the modified AST, and this source code is re-

parsed to produce the derivative AST.

5. The derivative AST is statically analyzed, producing a derivative model (pro-

gram graph).

6. The initial and derivative model are tested for equivalence modulo the sequence

of primitive operations performed on the initial AST. In our case, this means

testing for the preservation of certain types of edges in the program graphs.

If the models (program graphs) are found to be equivalent, the transformation

preserved meaning, and the refactoring can commit.

Fig. 11This process is illustrated in Figure 11. The cornerstone of an efficient imple-

mentation is a fast algorithm for performing Step 6: testing the semantic models for

equivalence. When the semantic model is a program graph, we will propose that this

can be done by rewriting the initial and derivative program graphs to a normal form

which can be quickly tested for equality.
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3.3.5 Normalization

Illustrated in §3.3.3The process of normalizing a program graph was already illustrated in our Extract

Method example: All of the edges that are entirely contained in the affected subtree are

removed, and boundary-crossing edges are adjusted so that they do not have endpoints

inside the subtree but rather the subtree is treated as an endpoint in itself.
Leaves common AST

nodes and

boundary-crossing edges

This procedure can be applied to both the initial and derivative program graphs, and

the two normalized program graphs should be isomorphic in a very predictable way.

By collapsing the affected subtrees into a single node and eliminating edges within that

node, the remaining nodes and edges of the resulting graphs are exactly the common

AST nodes and boundary-crossing edges, respectively.

3.3.6 Equality Testing

Textual spanTo turn the idea of normalization into an algorithm, we can capitalize on the observation

that every node in an AST can be described as an interval denoting the textual span of

its tokens in the program text. In other words, every AST node can be described by an

interval describing a starting and ending textual offset. The root of an AST would have

a textual span encompassing the entire program text; a node representing a function

would encompass everything from its first token (or perhaps a leading comment)

through the end of the function; and an identifier token in the AST would only have the

textual span of that token’s text. Note that, with this representation, the textual span of

a subtree will always be a subinterval of the textual span of its parent node in the AST.
Primitive operations

change intervals

predictably

Now, consider how each of the primitive operations affects AST nodes’ intervals.

• Add (α). If n characters are added at offset i, then all AST nodes with a textual

offset beyond i will be moved n characters later.

• Eliminate (ǫ). If n characters are removed beginning at offset i, then all AST

nodes with a textual offset beyond n + i will be moved n characters earlier.

• Replace (ρ), Move (µ), Copy (κ). Similar.

In other words, by tracking what primitive operations are performed, we can use the

textual span of a node in the initial AST to predict the textual span of the corresponding

node in the derivative AST.
Endpoints as textual

intervals
Since AST nodes serve as the endpoints of the “extra edges” in a program graph,

and AST nodes can be represented as (textual) intervals, the edges in a program graph

can similarly be represented as an ordered triple containing

• the source node’s interval,

• the sink node’s interval, and

• the edge’s type.

Then we can use this ability to predict textual offsets in the derivative AST to predict,

for each edge in the initial program graph, what the corresponding edge in the derivative

program graph will be.
Equivalence checking

algorithm
In the end, this gives rise to the following procedure for checking two program

graphs for equivalence modulo a sequence of primitive operations.

1. Represent the initial and derivative program graphs as a list of ordered triples,

one triple per edge, using textual spans to denote the endpoints.

2. Normalize the initial program graph, forming a new list of triples, and use the

sequence of primitive operations to store the expected endpoints in the derivative

AST rather than the actual endpoints in the initial AST.
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3. Normalize the derivative program graph, forming a new list of triples.

4. If the two lists of triples are equal (that is, they contain exactly the same ordered

triples), then the program graphs are equivalent.
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Class
    name: "Test2"
    body:
        (1) Field
             type: int
             name: "field"
             initialValue:
                 IntConstant
                     value: 0
        (2) Method
             returnType: void
             name: "fun"
             arguments: (none)
             body:
                (i) LocalVariable
                    type: int
                    name: "i"
                    initialValue:
                        IntConstant
                            value: 0
                (ii) PostIncrement
                      variable: "i"
                (iii) PostIncrement
                      variable: "field"
                (iv) MethodInvocation
                      name: "System.out.println"
                      arguments:
                         VariableAccess
                            variable: "i"
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class Test2 {

  int field = 0;

  void fun() {

    int i = 0;

    i++;

    field++;

    System.out.println(i);

  }

}

Figure 7: Example Java program and corresponding program graph
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Class
    name: "Test2"
    body:
        (1) Field
             type: int
             name: "field"
             initialValue:
                 IntConstant
                     value: 0
        (2) Method
             returnType: void
             name: "fun"
             arguments: (none)
             body:
                (i) LocalVariable
                     type: int
                     name: "i"
                     initialValue:
                         IntConstant
                            value: 0
                (ii) Assignment
                      variable: "i"
                      expression:
                          MethodInvocation
                             name: "newMethod"
                             arguments:
                                 VariableAccess
                                   variable: "i"
                (iii) MethodInvocation
                        name: "System.out.println"
                        arguments:
                           VariableAccess
                              variable: "i"
        (3) Method
             returnType: int
             name: "newMethod"
             arguments: ...
             body: ...
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class Test2 {

  int field = 0;

  void fun() {

    int i = 0;

    i = newMethod(i);

    System.out.println(i);

  }

  i newMethod(int i) {

    i++;

    field++;

    return i;

  }

}
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Figure 8: Program graph from Figure 7 after applying the Extract Method refactoring

to the two post-increment statements. Scope and binding edges have been omitted.
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Class
    name: "Test2"
    body:
        (1) Field
             type: int
             name: "field"
             initialValue:
                 IntConstant
                     value: 0
        (2) Method
             returnType: void
             name: "fun"
             arguments: (none)
             body:
                (i) LocalVariable
                    type: int
                    name: "i"
                    initialValue:
                        IntConstant
                            value: 0
                (ii) PostIncrement
                      variable: "i"
                (iii) PostIncrement
                      variable: "field"
                (iv) MethodInvocation
                      name: "System.out.println"
                      arguments:
                         VariableAccess
                            variable: "i"
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class 

  int field = 0;

  

    int i = 0;

    i++;

    field++;

    System.out.println(i);

  }

}

Figure 9: Program graph from Figure 7, normalized prior to applying the Extract

Method refactoring to the two post-increment statements
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Class
    name: " est2"
    body:
        (1) Field
             type: int
             name: " eld"
             initialValue:
                 IntConstant
                     value: 0
        (2) Method
             returnType: void
             name: "fun"
             arguments: (none)
             body:
                (i) LocalVariable
                     type: int
                     name: "i"
                     initialValue:
                         IntConstant
                            value: 0
                (ii) Assignment
                      variable: "i"
                      expression:
                          MethodInvocation
                             name: "newMet
                             arguments:
                                 VariableAccess
                                   variable: "i"
                (iii) MethodInvocation
                        name: "System.out.println"
                        arguments:
                           VariableAccess
                              variable: "i"
        (3) Method
             returnType: int
             name: "newMethod"
             arguments: ...
             body: ...

class 

  int field = 0;

  void fun() {

    int i = 0;

    i = newMethod(i);

    System.out.println(i);

  }

  i newMethod(int i) {

    i++;

    field++;

    return i;

  }

}
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Figure 10: Program graph from Figure 8, normalized after applying the Extract Method

refactoring to the two post-increment statements
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4. Language-Agnostic C Pseudo-Preprocessing

Three contributionsThe final part of the thesis will make three contributions:

1. An algorithm for language-agnostic conditional completion in LR(1) parsers

2. Mechanisms for integrating pseudo-preprocessing with generated ASTs

3. A strategy for representing preprocessor directives in a program graph and

including them in universal precondition checking

Previous workOur initial paper on generating rewritable ASTs [91] also lays the foundations

for representing C preprocessor directives in the AST, starting from earlier work by

Garrido [48]. A subsequent paper [92] defines the notions of token-whitetext affixes

and substitution tokens as a means of incorporating syntactic information about single-

configuration preprocessing directives into ASTs for arbitrary languages.
Conditional compilation

problem
As alluded to in Section 1, the biggest challenge in refactoring preprocessed

code involves conditional compilation. In an example such as the following, a

Rename refactoring would need to modify the variable references in both arms of the

conditional directive, but it is not immediately obvious how to parse this—much less

represent or refactor it.

if (

#if defined(A) || defined(B)

variable

#else

function() < 1 && variable

#endif

< 2) x = 3;

Garrido’s techniqueGarrido’s [48] technique for handling conditional compilation involves modifying

the grammar to specify where conditionals may appear and then inserting a pass

between lexical analysis and parsing which ensures that conditional directives appear

only at these locations: If a conditional directive appears at an unexpected location, it is

moved forward or backward as necessary, and tokens are copied into each branch of the

conditional. This process is called completing the conditional. Although reasonable,

it is language-specific, heuristic, and becomes complicated in the presence of nested

conditionals. It also requires modifying the grammar and adding AST nodes for

conditional compilation directives.
Solution based on GLR,

Celentano
Our solution for representing multiple-configuration sources, which is intended

to be language-agnostic and grammar-independent, is based on concepts underlying

Generalized LR (GLR) parsing [107, p. 5], an extension of the usual LR parsing

algorithm [69, 33] which can handle ambiguities in a language, as well as some

algorithmic ideas from Celentano’s method for incremental LR parsing [25, 9, 90].

4.1 Representing Conditionals

AST should capture all

configurations

Conceptually, conditional compilation allows for variation in an AST depending on

the preprocessor’s configuration, that is, the set of macro definitions under which it

is operating: The structure of the AST under one configuration is not necessarily the

same as for another. Our solution is to construct a single AST which captures all of the

AST variations that may occur under all feasible configurations—just as GLR parsers

can use a single parse tree to represent several ambiguous interpretations of a phrase.
Fig. 12Figures 12(a) and (b) show the individual ASTs that would be constructed for the

preceding example under each preprocessor configuration. Notice that the smallest

subtree that differs between the two is the expression under the if-statement node.
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(a) (b)

(c)

Figure 12: (a) The AST for the configuration defined(A) || defined(B). (b) The

AST for the configuration !(defined(A) || defined(B)). (c) The multiple-configuration

AST. The dotted node represents an “ambiguous” expression whose children are each

guarded by a different preprocessor configuration.

Figure 12(c) shows a “multiple-configuration” AST which combines the previous

ASTs by inserting an “ambiguous” expression node whose children are the individual

expression nodes guarded by the various preprocessor configurations.

4.2 Parsing Conditionals

Construction in LR(1)

parsers

This representation can be constructed by modifying a deterministic LR(1) parser. The

following method is oversimplified—its positioning of ambiguous nodes in the AST

is often less than ideal—but it nevertheless conveys the gist of our technique.3 The

parser proceeds as usual until it reaches an #ifdef directive in the token stream. The

parser clones itself so that a different copy of the parser can process each branch of

the #ifdef. Each clone independently processes the tokens under its branch of the

conditional, stopping when it is about to shift the token following the #endif. The

clones are then compared for equivalence: If two or more clones are in the same state

and have equivalent stack contents, those clones are merged into a single parser.4 When

parsers are merged, the topmost elements on their stacks are made to be children of

an “ambiguous” node (as in Figure 12(c)), and this “ambiguous” node becomes the

topmost element on the stack of the merged parser. After testing for equivalence and

possibly merging parsers, each subsequent token is fed to all remaining clones, which

shift the token and perform any reductions, stopping when they are prepared to shift

the following token. The clones are again tested for equivalence, merged as necessary,

3It appears that the application of the same essential ideas to preprocessing was independently discovered

and implemented in [94].
4Why is it safe to merge parsers under these conditions? In mathematical models of deterministic shift-

reduce parsers, the transition relation between states is a function of the stack contents, the current state, and

the remaining input: If all of these are identical among parsers, the parsers’ subsequent behaviors will be

identical.
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and the cycle continues until only a single parser remains. In the worst case, this will

happen at the end of the input.

4.3 Future Work

Although the multiple-configuration program representation and the simplified parsing

algorithm described above have been published, more work remains to be done.

4.3.1 Enhancements to the Parsing Algorithm

Specify ambiguous nodesFirst, the algorithm above assumes that any AST node can be made into an ambiguous

node. This makes the structure of the resulting AST unpredictable, which makes

program analyses and transformations difficult to write. One enhancement will be to

refine this algorithm so that the user can define which AST nodes are allowed to be

ambiguous (or, rather, which nonterminals in the grammar have ambiguous AST nodes

associated with them).
Finer-grained parser

merging
Second, testing for parser equivalence only prior to shift operations can place

ambiguous nodes significantly higher in the AST than necessary. For example, if the

last statement in a program is guarded by an #ifdef, the root of the AST will be made

into an ambiguous node rather than just the last statement node: The statement will

be reduced, but the entire program will also be reduced (creating the root AST node),

before the end-of-input token is “shifted” (i.e., an accept action is taken). Allowing

the user to specify “ambiguous” nonterminals can help here as well. If these can be

ordered according to the containment relationship of the corresponding AST nodes—

for example, expression < statement < function < program—then the parser can order

the reduce operations among the parser clones to ensure that ambiguous nodes are

placed as low as possible in the AST.

4.3.2 Universal Precondition Checking for Preprocessed Code

Finally, the dissertation will address how to integrate preprocessor directives into a

program graph and how they can be integrated with a universal precondition checker.

The basic strategy for including preprocessor directives in ASTs (generated or hand-

written) is discussed in our SLE paper [91]; these can act as nodes in a program graph

as well.
Guarded edgesGarrido [48] observed that handling multiple configurations means that symbol

table entries must be “guarded” by a preprocessor configuration, since some declara-

tions may exist only under certain configurations, or an entity with a particular name

may have several possible types depending on the preprocessor configuration. The

proposed dissertation will address how to handle such situations in a program graph

representation. The obvious analog would be to associate such a “guard” with the edges

in a program graph. A name could bind to several possible declarations according to

the preprocessor configuration; there could be several possible control flows; du-chains

could vary; etc.
Universal

prepreprocessor

preconditions

The dissertation will also address how to integrate such a representation with

a universal precondition checker. Generally, refactoring preprocessed code means

checking for two preconditions.

1. Nodes/tokens resulting from file inclusion or a macro expansion cannot be

modified unless the included file or macro definition is modified. The latter can

only be done if every occurrence of the correspoding node/token can be changed

similarly.

2. Preprocessor directives cannot be reordered if it will change the meaning/in-

terpretation of those directives. (For example, one can swap the order of two
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method definitions in a C++ class, but not if that would move a macro use above

its previous #define, or if it would move it out of an #ifdef it was in before.)

Uniform replacementThe simplest way to handle condition (1) is to simply not allow nodes resulting

from an inclusion or expansion to be modified. It is not yet clear whether a program

graph representation can handle the latter case—detecting if the changes propagated

from modifying an included file or macro definition will be valid.
Preprocessor directive

dependence graph

(PDDG)

However, it appears that a program graph can certainly handle precondition (2):

Detecting whether a refactoring that would otherwise be valid will reorder preprocessor

directives in such a way that it would no longer be invalid. The strategy would be to

construct a representation similar to a program dependence graph among preprocessor

directives in the AST. The relationship between macro definitions and uses is analogous

to a data dependence, and and there is a relationship analogous to a control dependence

between conditional compilation directives and the macro uses and control lines inside

each arm of the conditional. The usual theory from compiler optimization extends

naturally: A reordering transformation is valid if it preserves dependences [65, §2.2.3].

5. Scope, Evaluation, and Plan of Action

As indicated earlier, the work on generating rewritable ASTs from annotated grammars

is mostly complete. In contrast, universal precondition checking and our technique for

handling conditional compilation in LR(1) parsers are largely untested ideas.

5.1 Three Refactoring Tools

As a platform for testing the proposed ideas, three Eclipse-based refactoring tools are

being developed.

• Photran, an IDE and refactoring tool for Fortran 2008. Although it origi-

nated from UIUC, Photran is now an open-source project hosted by the Eclipse

Foundation and a component of the Eclipse Parallel Tools Platform. It has an

active user community; new releases generally receive about 20,000 downloads.

The parser, AST, and syntactic rewriting infrastructure are all generated from

an annotated grammar using the technique described in Section 2, and Photran

currently uses a program graph-based representation that follows the model

described in Section 3. The parser and AST have been extended by colleagues

at Fujitsu Japan to support XPFortran [78, 86], and refactorings are currently

being developed by several students at UIUC as well as by colleagues at

Unijuí Universidade Regional (Brazil) and Universidad Nacional de la Plata

(Argentina). Photran 5.0, planned for release during the 4th quarter of 2009,

will contain about 15 refactorings.

• A prototype refactoring tool for Lua. Lua is a popular scripting language

that is used in Adobe’s Photoshop Lightroom and World of Warcraft and is “the

leading scripting language in games” [77]. Using the technique in Section 2,

an Eclipse-based refactoring tool for Lua with two small refactorings (Rename

Local Variable and Interchange Loops) was developed in about 7.5 hours.

• Ludwig, a lexer/parser/rewritable AST generator and refactoring tool for

EBNF grammars. Ludwig is the tool used to generate the parser, AST, and

rewriting infrastructure in Photran, as well as for the Lua refactoring tool and for

the refactorings in Ludwig itself.

The decision to refactor Fortran, Lua, and EBNF was based on the disparity of

these languages. Fortran is a very large, statically-typed, compiled language. Lua is

25



a very small, dynamically-typed scripting language. EBNF is a specification language

that is almost nothing like either Fortran or Lua.

5.2 Universal Precondition Checking

Photran currently uses a program graph-based semantic representation, which has

been isolated into a library we call the Virtual Program Graph, or VPG. It has been

performance-tuned and tested on projects up to one million lines of code.

A universal precondition checker will be built into the VPG and used to build

several refactorings for Fortran, Lua, and EBNF. Since many refactorings have already

been built and tested (particularly in Photran) using traditional precondition checking,

for the purpose of comparison, several of these refactorings will be re-implemented

using the universal precondition checker. This will allow the size (in lines of code) and

performance of the refactorings to be compared.

5.3 Language-Agnostic C Pseudo-Preprocessing

Photran 5.1 is scheduled to include single-configuration C prepreprocessor support

in refactorings. This is being supported by modifying the C preprocessor in the

Eclipse C/C++ Development Tools (CDT) to interface with Photran’s lexer, allowing

information about preprocessor directives to be added to its abstract syntax tree.

This will provide a platform for testing many of our ideas for representing single-

configuration preprocessed code.

Our technique for language-agnostic conditional completion and for representing

multiple-configuration preprocessed code will be prototyped in the Lua refactoring

tool.5

5Multiple-configuration preprocessing may or may not be integrated into Photran, for technical and

logistical reasons.
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Related Work

1. General

Terminology

Refactoring ,

restructuring

“Refactoring” and “restructuring” often seem to be interchangable terms, although

there is actually a subtle difference between them. Refactoring is a specific technique

for performing restructuring which uses small-scale, behavior-preserving changes to

achieve larger, behavior-preserving changes in software systems [45]. In contrast,

restructuring could also be achieved through one massive change that does not preserve

behavior in the interim.
Distinction is usageThat said, individual refactorings—the actual changes made—could also be called

restructurings, because the two terms differ only in terms of the larger process. Thus,

calling a restructuring tool a refactoring tool indicates a distinction only in the context

in which it is expected to be used, not necessarily in what the tool does.
Distinction is not OOA widely-cited survey of refactoring research [80] and a popular wiki [8] make an

erroneous distinction between refactoring and restructuring, claiming that refactoring

applies only to object-oriented systems. Although early work on refactoring happened

to focus on object-oriented systems while work on restructuring at the same time did

not (for example, contrast Opdyke’s dissertation on “refactoring” with Griswold’s on

“restructuring”), that is not a defining distinction. This is bolstered by an abundance of

more recent work on refactoring databases [13] and non-object-oriented languages [49,

79, 74].

History

Early workThe idea of program transformation has been around for almost as long as there

have been programs to transform. Indeed, IBM’s compiler for F I (1959)—

the first compiler for the first high-level language—performed common subexpression

elimination, loop-independent code motion, and constant folding, among other trans-

formations [11]. Behavior-preserving transformations at the source code level first

gained interest during the 1970s, motivated initially by the desire to convert programs

using goto statements into structured programs. This application led to the term

restructuring, which took on a more generalized meaning6 that followed it into the

1980s and 1990s.
Interactive GUIs6A commonly-cited definition of restructuring appears in Chikofsky & Cross: “Restructuring is

the transformation from one representation form to another at the same relative abstraction level,

while preserving the subject system’s external behavior (functionality and semantics). A restructuring

transformation is often one of appearance, such as altering code to improve its structure in the traditional

sense of structured design. [ . . . ] However, the term has a broader meaning that recognizes the application of

similar transformations [ . . . ] in reshaping data models, design plans, and requirements structures.” [26]
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By that time, graphical user interfaces were becoming more widely available, and

they proved to be a boon to restructuring tools. In contrast to the batch systems of the

previous decades, the restructuring tools of this era were interactive.
Fortran parallelizationThis proved particularly beneficial to researchers working on parallelizing com-

pilers, who were discovering that fully-automatic, coarse-grained parallelization could

not rival the work of a competent human. In response, they built tools like PTOOL [12],

R
n [28, 29, 23], ParaScope [16, 66, 64, 27, 55], Faust [54], and D [58], which

integrated their compilers’ dependence analyses and loop transformations into an

interactive tool. While the tool could perform the transformations and (attempt to)

verify their correctness, the choice of which transformations to apply could be left to

the programmer.7

Griswold & OpdykeWhile those researchers were building interactive, behavior-preserving, source-

level program transformation tools for performance tuning, two other researchers

established the idea these tools could be used for an entirely different purpose: They

could be used to help programmers make design changes during software maintenance.

Bill Griswold’s 1991 Ph.D. thesis [53] identified several common transformations—

including moving, renaming, inlining, and extracting program entities—and detailed

their implementation, prototyping them in a restructuring tool for Scheme. Around

the same time, Opdyke and Johnson introduced the term “refactoring” into the

literature [88]8; Bill Opdyke’s 1992 dissertation [87] catalogued transformations for

building object-oriented frameworks and prototyped them in a refactoring tool for C++.

While the big-picture ideas were similar, Griswold’s dissertation focused largely on

tool implementation and guaranteeing correctness, while Opdyke’s focused more on

the catalog of refactorings.
Refactoring BrowserShortly thereafter, Brant and Roberts began developing the Smalltalk Refactoring

Browser [99], which lead to Roberts’ dissertation [100]. The Refactoring Browser

was destined to be more than a research prototype; it was intended to be a useful,

production-grade tool. Unlike previous restructuring tools, the Refactoring Browser

was integrated into the Smalltalk development environment, allowing refactoring to

be seamlessly intermixed with coding. It quickly gained popularity, most notably

among the developers at Tektronix who later developed eXtreme Programming (XP).

XP became the first software process to advocate refactoring as a critical step.
ProliferationThe popularity of XP, coupled with the subsequent publication of Fowler’s Refac-

toring [44] in 1999, brought “refactoring” into the software development parlance. The

2000s saw a proliferation of refactoring tools. Automated refactoring became available

to Java programmers on a large scale in 2001, when they were included in the (heavily

Smalltalk-influenced) Eclipse JDT and IntelliJ IDEA. They were subsequently added to

other IDEs including Microsoft Visual Studio, Sun NetBeans, and Apple Xcode, and

other languages have been supported in the form of refactoring plug-ins for Eclipse,

NetBeans, Visual Studio, and even emacs and vi.

2. Refactoring Tools

Architecture, Design, & Implementation

Refactoring BrowserAlthough Griswold [53] prototyped an interactive restructuring tool for Scheme and

Opdyke [87] prototyped a refactoring tool for a subset of C++, Brant and Roberts’

work on the Smalltalk Refactoring Browser [99, 100] resulted in the first production

system and arguably had the greatest influence on subsequent tools. Perhaps its most

important contribution was its intensely practical orientation: The Refactoring Browser

7Subsequent interactive parallelization tools include SUIF Explorer [76] and GPE [21].
8. . . although Johnson freely admits that Kent Beck and others at Tektronix were using the term

conversationally before then.
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established the ideas that refactorings must (1) be integrated into standard development

tools, (2) be fast (or else a programmer would “just do [them] by hand and live with

the consequences”), (3) avoid purely automatic reorganization, and (4) be “reasonably

correct” [99].
Speed in RBAchieving reasonable speed was critical. Griswold’s prototype used a program

dependence graph to make extensive guarantees about the correctness of its trans-

formations, but it was very slow, sometimes taking several minutes to perform a

transformation. In contrast, the Refactoring Browser was usable in interactive time

but used only lightweight, syntactic analyses. However, it did not sacrifice safety.

Most of the time, the lightweight analyses were sufficient to guarantee the safety of

the transformation; indeed, many semantic analyses could be computed syntactically,

thanks to Smalltalk’s small grammar. When a safe transformation could not be

guaranteed (e.g., inlining a dynamically-dispatched method), rather than attempt an

expensive analysis, the tool would simply ask the user for input; then the correctness of

the transformation depended on the accuracy of the user’s input. While the Refactoring

Browser did not sacrifice safety, avoiding expensive analyses did result in a sacrifice in

precision. For example, renaming the selector (i.e., method) open would result in both

File#open and Socket#open being renamed, even if the two were distinguishable (e.g.,

through type inference). [19]
RubiconOf course, many refactoring tools have been developed since then, varying widely

in their capabilities and robustness. One popular distinction was originally promoted

by Martin Fowler [43]: A refactoring tool that correctly implements the Extract

Method refactoring has “crossed refactoring’s rubicon.” Since that refactoring is

tremendously difficult to implement correctly without a fairly sophisticated program

representation (an AST, often with flow analysis), the existence of a good Extract

Method refactoring provided an easy way to distinguish “serious” refactoring tools

from those attempting to use regular expression matching or other ill-informed

techniques for program analysis; tools lacking an adequate analysis and transformation

infrastructure would inevitably be doomed to failure, since the types of refactorings

that could be implemented and the reliability of these refactorings would generally be

limited.
Production toolsEven after the infrastructure to “cross the rubicon” is in place, building a robust and

scalable refactoring tool is difficult, and for that reason, studying the design decisions

and engineering trade-offs in widely-used commercial tools is particularly valuable.

Unfortunately, there is little publicly-available documentation on their internals. Much

of what is available has emerged from the annual ACM Workshop on Refactoring

Tools [34, 37, 35]. Kieżun, Fuhrer, and Keller [46] trace the refactoring capabilities

in the Eclipse Java Development Tools from Eclipse 1.0 (2001) through Eclipse 3.3

(2007), briefly describing its infrastructure and the participant model, which allows

behavior to be “plugged into” refactorings like Rename and Move (this would allow an

XML file to be updated when a Java class is renamed, for example). Bečička, Hřebejk,

and Zajac [17] give a high-level overview of the refactoring infrastructure in NetBeans,

while Jemerov [61] gives a much more detailed description of the facilities available in

IntelliJ IDEA.
Research toolsIn contrast, the research literature contains ample information on prototype refac-

toring tools. Many of these tools were a first attempt to refactor a particular language.

These include tools to refactor Haskell and Erlang [74, 75] as well as Ada 95 [15],

and Oberon [39]. Others were built to prototype a particular aspect of refactoring tool

design. Morgenthaler’s Cstructure [82] introduced virtual control flow, which was later

implemented in Apple Xcode [18]. Garrido’s CRefactory [48] served as a platform

for prototyping C preprocessor-aware refactorings. The JastAddJ compiler [38] was

extended to prototype a Rename refactoring that was more reliable and more easily

extensible than the ones available in production refactoring tools for Java [101].
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DSLs for Implementing Refactorings

Motivation for DSLMost refactoring tools use AST manipulations or AST-guided text manipulations to

transform source code. This model is straightforward, and it is sufficient for expressing

the transformations in most common refactorings (e.g., Rename, Extract Method,

Move Method). However, there are certainly more concise ways to specify program

analyses and transformations. And in some cases, imperative tree manipulation

can become outright confusing. Consider, for example, the complexity of the tree

matching and manipulation in a refactoring which applies the distributive property

a(b − c) = ab − ac to an integer expression.9 In cases like this, the disparity between

specification and implementation becomes very apparent, and this could be lessened

by implementing the analysis and/or transformation in a domain-specific language.
JunGLOne such language is JunGL [109, 108], “a hybrid of a functional language in the

style of ML and a logic query language” [108] which was specifically designed for

scripting refactorings. JunGL allows the programmer to define, query, manipulate, and

pretty print a program graph-like representation. AST nodes can be defined as algebraic

data types, and pattern-matching functions can be defined over these types. A variant of

Datalog is used to define the “extra edges” representing semantic information, as well

as to form queries over the graph during the precondition checking stage of refactoring.

Finally, the AST can be transformed through mutators on the AST nodes and the result

prettyprinted back to source code.
RB Rewrite EngineA very different approach was taken several years earlier in in the Smalltalk

Refactoring Browser. Smalltalk has a surprisingly small syntax [14]—small enough

that the Refactoring Browser’s preconditions were built using only name binding

information and syntactic pattern matching, with no additional program analyses [19].

Because of the the heavy reliance on pattern matching, its developers soon integrated a

rule-based rewrite engine. Originally, “the syntax for this engine was too complex

for normal users,” [98], but it was later simplified, making it possible for users to

define their own transformations. In this simplified version, the expressions on the left-

and right-hand sides of the rewrite rules looked like ordinary Smalltalk expressions,

except that they could also contain pattern variables for matching arbitary expressions

(subtrees); these pattern variables could be prefixed with special characters to exert

more fine-grained control over the matching procedure. [98]

Empirical Data on Refactoring

Goal: Focus effort based

on usage

When creating a new refactoring tool, it is helpful to know what refactorings are the

most likely to be used, so that resources can be devoted to developing refactorings

that will likely have the most impact. Unfortunately, none of the existing studies of

refactoring usage are based on a statistical sample, and all are limited to Java, so one

should not expect the results reported to extrapolate to other languages. Nevertheless,

they are informative and useful as a point of reference.
API studiesTwo such studies are the following. Using four frameworks and one library as case

studies, Dig and Johnson [36] looked at the evolution of Java APIs, and, based on a

manual inspection of API changes, concluded that 80% of the breaking API changes

were refactorings. Counsell et al. [31] considered seven Java projects as case studies

and used a tool to attempt to detect refactorings that occurred between versions.
Problems with theseEven disregarding the fact that their data is based on a very small number of case

studies, these results are not particularly useful to someone building a refactoring

tool. There are two reasons. First, their results indicate only what API changes

could have been automated refactorings, according to the authors’ discernment; they

9This is complicated by the fact that a, b, and c may be arbitrary expressions (as opposed to variables or

constants), the computation of a is duplicated on the right-hand side, and the associativity and precedence of

the expressions on the left- and right-hand sides of the equality are different.
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Refactoring Uses Percentage

Rename 179,871 74.8%

Extract Local Variable 13,523 5.6%

Move 13,208 5.5%

Extract Method 10,581 4.4%

Change Method Signature 4,764 2.0%

Inline 4,102 1.7%

Extract Constant 3,363 1.4%

(16 Other Refactorings) 10,924 4.5%

Table 1: Usage of automated Java refactorings in Eclipse by approximately 13,000

developers, according to Murphy-Hill et al. [85, Table 1]. Refactoring commands were

used a total of 240,336 times; the third column gives the percentage of uses relative to

that number. The 16 refactorings aggregated in the last row each comprised less than

1% of total uses.

do not indicate which ones (if any) were actually performed by a tool. Perhaps

more importantly, these results are limited to observable, API-level changes, so any

refactorings that do not fall into that category (e.g., Extract Method, Extract Local

Variable) are necessarily excluded. For these reasons, we will look to other sources to

determine what the “most important” refactorings are for a refactoring tool.
Studies on JDT usageSomewhat more useful data are provided by Murphy et al. [84] and Murphy-Hill et

al. [85]. Murphy et al. used the Mylar Monitor to collect data from 41 Java developers

on the features used in the Eclipse IDE. Murphy-Hill et al. compare this data set

with two others, including a publicly-available data set available from the Eclipse

Foundation [7]. Eclipse 3.4 included the Usage Data Collector (UDC), a monitor that

logged all of the commands executed by a user; this data set consists of these logs from

more than 13,000 developers who consented to sending this information to the Eclipse

Foundation.
Cf. Tbl. 1Although it is a convenience sample, the UDC data set is by far the largest and

probably gives the best indication of what automated refactorings are most used by

Java developers. It is summarized in Table 1. Most striking is the fact that Rename is

used more than all of the other refactorings combined, both in the UDC data set and in

Murphy’s data set [85]. This is bolstered by Murphy’s observation that almost 100%

of the developers in her sample used this refactoring, while the next-most-frequently

used refactorings (Move and Extract) were each used by fewer than 60% of developers,

followed by Pull Up and Inline closer to 30%.

3. Language-Independent and Language-Parametric

Tools

In compiler researchThe proposed research focuses on exploiting commonality among the infrastructural

components of a refactoring tool. In the domain of compilers, nearly every component

has been implemented in a library, framework, or DSL/code generator at some point in

time. There have been lexical analyzer generators [63, 73], parser generators [62], AST

generators [110], symbol table generators [97], data flow analyzer generators [67], code

generator generators [24], and optimizing transformation generators [104], as well as

entire compiler generators [106] and frameworks such as SUIF [105] and LLVM [72].

Lexer and parser generators are discussed in most compiler textbooks, including Aho

et al. [10]; Muchnick discusses code generator generators [83, Ch. 6] and data-flow

analyzer generators [83, §8.13].
Complementary work
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Because the proposed research focuses on refactoring-specific issues, it generally

does not compete with this work but rather complements it. For example, the AST

generation algorithm could be implemented on top of virtually any parser generator.

One could generate rewritable ASTs from Zephyr specifications, perhaps by storing

offsets/lengths in AST nodes rather than concretizing the AST. These ASTs would be

integrated with the VPG. A generated symbol table infrastructure could be helpful in

building name-binding edges in a VPG. And so forth.
Generic refactoringWhile there is been a plethora of work on making language-parametric tools for

constructing compilers, there has been almost no such work targeted specifically

at refactoring tools. However, there have been a few isolated attempts to find

commonality in refactorings across languages. Lämmel [71] suggests that refactorings

have both language-independent and language-dependent components, and that it may

be possible to implement some refactorings “generically,” parameterizing the language-

dependent parts according to the semantics of the underlying language. Garrido’s

verification of refactorings using a formal semantics [51] acknowledges this as well,

suggesting that the language specifics could be replaced and the refactoring re-verified

with a different language. Finally, Mens [81] suggests that graph rewriting rules

are an appropriate facility for specifying refactorings, assuming a program graph

representation is adequate for capturing the relevant semantics of the underlying

language.

4. Program Representation

Abstract Syntax

Although there is an abundance of existing work on abstract syntax, the proposed

work is distinguished by (1) its annotation-based approach for the definition of

abstract syntax (as opposed to a more traditional declarative approach), (2) its focus

on incorporating C preprocessor directives in syntax trees for arbitrary languages,

and (3) its focus on practical issues, including layout retention, customizability, and

exposure as an API.

The Zephyr abstract syntax description language [110] is essentially a declarative

language for “tree-like data structures” and resembles declarations of algebraic data

types (à la ML). Wile [111] advocates a particular grammar notation (WBNF) which

makes some aspects of abstract syntax (e.g., iteration, optionality, precedence, and

nesting) more explicit and suggests a heuristic process by which Yacc grammars

can be converted and abstract syntax derived automatically. Among existing tools,

ANTLR [1, 93], LPG [5], and JavaCC/JJTree [3] all include AST generators; LPG’s is

derived directly from the concrete syntax, while ANTLR and JJTree rely on declarative

specifications embedded in the grammar.

The proposed approach differs in many ways from all of these. For example,

Zephyr is not integrated with a parser generator; ANTLR’s ASTs allow a limited

form of source rewriting [93, Ch. 9] but have a dramatically different structure than

the ASTs we describe; and no existing AST generator can generate ASTs for C-

preprocessed sources. However, the most prominent distinction of the present work

is its annotation-based approach. Zephyr, ANTLR, and JJTree require the user to fully

specify an abstract syntax. LPG constructs a primitive abstract syntax from the concrete

syntax automatically. In contrast, our approach allows a default abstract syntax to be

constructed from the concrete syntax and subsequently refined using annotations. This

places less of an annotation burden on the programmer than requiring a fully explicit

abstract syntax definition while simultaneously allowing more flexibility than a fully-

inferred definition. One drawback of the annotation-based approach is that the structure

of AST nodes is not immediately obvious, particularly when (inline) annotations are
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used; to remedy this, in Ludwig, we are developing a GUI which allows the user to

view AST node structures as the grammar is being annotated.

Our heuristic for attaching whitetext to tokens in order to facilitate rewriting also

appears to be new, although the fundamental idea of including whitetext in syntax

trees appears elsewhere. Sellink and Verhoef [102] suggest placing whitespace and

comments into a parse tree by (automatically) modifying the grammar to include a

“layout” nonterminal prior to each occurrence of a token; Kort and Lämmel [70]

include such information as annotations in the parse tree. Sommerlad [103], who built

refactoring support into several IDEs not originally designed to support refactoring,

provides an algorithm by which comments can be associating with AST nodes during

refactoring, assuming they have been collected into a separate data structure by the

lexer and assuming the comments and AST nodes have position information associated

with them.

Semantic Representations

The program dependence graph, or PDG [41, 42] has been a classical program

representation in research work on software development environments. Ottenstein and

Ottenstein [89] first recognized in 1984 that a PDG could be used as a common program

representation among the various components (compiler, debugger, etc.) in such a

tool. They noted that a PDG can be updated incrementally and cited its advantages in

program slicing (for debugging) and optimization/code generation, as well as its use in

computing code complexity metrics.

The program summary graph [22] was used in Rice’s PTOOL parallelization

environment [12]. It is, in essence, a call graph extended with sufficient information to

determine what global variables and passed-by-reference variables could be defined at

a call site.

The Unified Interprocedural Graph (UIG) [56] was proposed in the context of a

maintenance environment for C programs. It combined a program summary graph,

call graph, interprocedural flow graph [57], and system dependence graph [59] (an

interprocedural variant of a PDG) into a single representation which could provide

data and control flow as well as data and control dependence information.

Griswold’s prototype restructurer for Scheme [53] used PDGs as its underlying

semantic representation. Because a PDG does not capture the scoping of name

bindings, he augmented the PDG with contours; this allowed him to detect when a

transformation would change name bindings. Because the AST and PDG were separate

program representations, a great deal of effort was required to reconcile the two.

One obvious way to avoid mapping between separate program representations, as

Griswold did, is to combine them into a single representation. For a source-level re-

structuring tool, this would mean combining the syntactic and semantic representations

into a single data structure—i.e., annotating the AST, and/or superimposing one or

more graph representations on its nodes. This idea does not appear to be attributable

to any one individual, as variations on it appear throughout the literature. For example,

Morgenthaler [82] describes a means by which the nodes in an AST can compute which

other AST nodes serve as control flow successors and predecessors (virtual control

flow), avoiding the need to maintain a separate control flow graph. The idea of forming

a graph structure from an AST is taken somewhat more literally by Mens [81], who uses

such graphs to specify refactorings using graph rewriting rules. And JunGL [109, 108]

uses an AST with a graph structure superimposed as its basic program representation.
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5. C Preprocessor Support

Our work is also the first to treat language-independent handling of C-preprocessed

code at length. An empirical confirmation of the importance of the C preprocessor

is given by Ernst et al. [40]. The conditional completion problem is defined by

Garrido [48]. The idea of modifying an LALR(1) parser appears to have been

developed independently in [94], although the discussion is brief and is limited to

the C language. Garrido [49, 50, 48] treats refactoring C-preprocessed code in

detail; McCloskey and Brewer [79] take a different approach, requiring a semi-

automated replacement of C preprocessor directives with a syntactically embedded

macro language.
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A
Tentative Thesis Outline

0. Background

History. Terminology. Notation.

1. Introduction

Problems being addressed. State of the practice. Architecture of refactor-

ing engines. Contributions.

Part I Generating Rewritable Abstract Syntax Trees

2. Annotating Grammars for the Generation of Rewritable ASTs

Grammar annotations. AST concretization. Rewriting API. Empirical

results. Related work.

3. An Algorithm for Constructing Rewritable ASTs

Formalization of the construction. Soundness properties.

Part II Universal Refactoring

4. Universal Precondition Checking

A posteriori checking. Program graphs. Primitive transformations.

Program graph normalization. Textual span representation. Universal

precondition checking algorithm. Related work.

5. The VPG Library

VPG database schema. API. Empirical results.

Part III Language-Agnostic C Preprocessor Support

6. Single-Configuration C Preprocessor Support

Prior work. Concretization of pseudo-preprocessed ASTs. Composition of

preprocessors. Empirical results.

7. Multiple-Configuration C Preprocessor Support

Language-agnostic LR(1) conditional completion. Proof of correctness.

Source reproduction. Composition of preprocessors. Empirical results.
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Part IV Conclusions

8. Conclusions

Case Studies: Photran (Fortran 2008), Lua, and Ludwig (EBNF). Future

work.

Appendices

A. Refactoring Eightbol

Complete source code for a refactoring tool for a toy language (Eightbol).

B. Example Annotated Grammars

Fortran 2008. Java 1.0. Lua 5.1. Ludwig EBNF.

C. Universal Formulations of Classical Refactorings

Detailed specifications of several refactorings.
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