
Refactoring and the Evolution of Fortran

Jeffrey L. Overbey Stas Negara Ralph E. Johnson

Department of Computer Science

University of Illinois at Urbana-Champaign

201 N. Goodwin Ave. MC 258

Urbana, IL 61801

{overbey2,snegara2,rjohnson}@illinois.edu

Abstract

Successful languages like Fortran keep changing and

tend to become more complex, often containing older fea-

tures that are rarely used. Complexity makes languages

harder to use and makes it harder to build tools for them.

A refactoring tool can eliminate use of these features from

programs; this makes programs easier to understand and

maintain, and it can simplify building certain programming

tools. This is illustrated by using Photran, a refactoring

tool for Fortran, to eliminate global variables from Fortran

programs so that they can be used with Adaptive MPI, a

version of MPI that performs load balancing.

1. Introduction

Just as software designs evolve, so do programming lan-

guages. The abstractions and models in a software system

evolve as its requirements are better understood; similarly,

the abstractions and constructs in a programming language

evolve as the expressivity demands of its applications are

better understood.

Fortran is a stellar example. FORTRAN I [5] emerged

as the first successful high-level language during the late

1950s. Predating nearly every major development in com-

puter science (and, in fact, predating the term “computer

science” [15]), FORTRAN I now appears quaint, differing

substantially from its modern incarnation, Fortran 2008,

which reflects the benefits of half a century of accumulated

experience. Since its inception, the Fortran language has

been adapted to incorporate subprograms (FORTRAN 66),

structured programming constructs (FORTRAN 77), mod-

ules and dynamic memory allocation (Fortran 90), object

orientation and C language interoperability (Fortran 2003),

and co-arrays (Fortran 2008).

In the Fortran world, backward compatibility is

paramount, and this is evident in the way the language has

evolved. Fortran 2008 is, for the most part, a superset of

its predecessors, dating back to at least FORTRAN 77. The

choice of language features to delete in any given revision

of the ISO Fortran standard [11] is extremely conservative.

Indeed, it is legal in Fortran 2003 to write an object-oriented

program in a source format designed for 80-column punch

cards. Not recommended, but legal.

Language evolution always comes at a cost. Introducing

new features adds complexity to the language. Deleting fea-

tures can obsolete existing programs. In the case of Fortran,

the costs of evolution are largely attributable to its emphasis

on backward compatibility. Continuously adding new fea-

tures while retaining anachronistic alternatives has resulted

in a complex language that is effectively splintered into sev-

eral dialects. Any single piece of code will only use a sub-

set of the Fortran language, depending on when the code

was written and what experience the author has. Fortran ap-

plications written when FORTRAN 66 was current will use

fixed source form and goto statements, while more recent

applications will use free source form and if statements.

FORTRAN 77 programmers use common blocks, while For-

tran 90 programmers will use module variables. Among

the latter, programmers with more training in software en-

gineering will be more inclined to encapsulate these vari-

ables, making them private. It remains to be seen how

the object-oriented facilities of Fortran 2003 will—or will

not—be used.

This means that a Fortran program written in 1970 will

use a different subset of the language than the same pro-

gram written in 2010. This will only be exacerbated as the

language continues to evolve. One can only imagine com-

paring Fortran programs from 1970 and 2070.1

1Arguably, Fortran should not exist in 2070. Perhaps it should not exist

in 2009. Another language should be used instead. Nevertheless, we are

operating under the assumption that the language will continue to exist,

people will continue to use it, and they will insist on its evolution. Inertia,

and substantial intellectual and economic investments, have a tremendous

impact on a language’s practical viability.



We believe the problem is not that the Fortran language

is evolving, or that different users will use different sub-

sets of the language, but rather that there is no strategy for

deleting old language constructs. This results in a language

that is increasingly large and complex not by design but by

default, since old features must be retained and every new

feature must co-exist with every old feature. The benefits of

retaining outdated constructs are fairly obvious (all relating

to backward compatibility), so let us consider the costs.

Arguably, the most important consideration is what im-

pact this has on the day-to-day Fortran programmer. Many

programmers can safely ignore most of the language, con-

centrating on a particular dialect that suits their purpose. For

example, students in a numerical analysis course can pro-

gram in free-format Fortran 90, using statically-allocated

arrays, subprograms, and the simplest control flow con-

structs. But the story is quite different for programmers

forced to maintain others’ code: These programmers can-

not confine themselves to their preferred subset of Fortran,

but rather they must be fluent in whatever dialect the code’s

original author used. In many cases, the programmer needs

to be aware of “old” and “new” ways to accomplish the

same task. Ideally, he should understand why the new way is

preferred. And, although it is not the job of the language or

compiler to force good programming style, failing to make

outdated constructs obsolete can leave a programmer bliss-

fully unaware that he is using a construct for which a pre-

ferred, modern alternative exists.

A second consideration impacts Fortran programmers in-

directly: Retaining old language features (and increasing

the complexity of the language) makes Fortran program-

ming tools—compilers, IDEs, static analysis tools, refac-

toring tools, performance analysis tools, debuggers, etc.—

increasingly expensive to build. In turn, this limits the num-

ber of tools that will be made available to Fortran program-

mers. No company will build a tool unless it reasonably

expects that it can recover its costs and eventually make a

profit from it. Increasing the complexity of the language in-

creases the time and cost of building tools, which lengthens

the payback period—the time it takes to recoup the initial

cost of creating the tool—and thus gives the tool a lower

return on investment compared to other projects. The lower

ROI, combined with the fact that Fortran is already a niche

market, renders the tool a less desirable investment. So

while a company that already produces a tool for Fortran 90

may be able to justify upgrading it to Fortran 2003 (since

much of the complexity has been mitigated), it is far more

difficult for a company to justify building a Fortran 2003

tool from scratch.

It appears that language evolution is a problem with no

good solution. Failing to add new features will make the

language stagnate. Adding new features without deleting

old ones results in the complexity-related problems just dis-

cussed. And deleting old features will break backward com-

patibility.

But there is one strategy that has the potential to allow

the language to evolve with fewer consequences. . .

2. Enter Refactoring

Refactoring [6] is the process of making substantive

changes to source code that do not have a net effect on the

program’s observed behavior. For example, one might re-

name a variable or function, split a long subprogram into

several smaller subprograms, or convert an array of struc-

tures to a structure of arrays.

The real benefit of refactoring comes from the fact that

many common refactorings can be automated. Automated

refactorings are included in many major IDEs, including

Eclipse JDT, IntelliJ IDEA, Microsoft Visual Studio, and

Apple Xcode, among others. Photran [14] provides the

same for Fortran. In an automated refactoring tool, the user

provides some input, the tool verifies that the refactoring

can be applied, and finally the tool changes the user’s source

code. For example, to rename a function, the user would se-

lect the function to rename and provide a new name for the

function; the tool would verify that the new name is legal

and that a function does not already exist with that name,

and finally it would change the user’s source code to reflect

the new name in the function declaration, interface dec-

larations, and all call sites. Like most refactorings, this is a

simple but tedious change to make manually.

Refactoring has traditionally been discussed in the con-

text of object-oriented design, where it allows a system’s de-

sign to be changed retroactively so that unforeseen changes

can be incorporated without compromising the integrity of

the design. According to common usage, however, refactor-

ing is not limited to object-oriented languages, and it need

not be limited to design-level concerns. In fact, we believe

refactoring tools can serve a very different purpose.

Automated refactoring tools can replace many outdated

language constructs with their modern equivalents. The

widespread availability of such a tool could allow program-

ming languages to deprecate features much more aggres-

sively. If such a tool were robust, reliable, readily available,

and reasonably fast, there would be much less impetus to re-

tain outdated language features, assuming such a tool would

allow older programs to be updated almost “for free.”

3. From FORTRAN to Fortran

A refactoring tool has an internal program representa-

tion much like that of a compiler, except that it contains

additional machinery for making changes to source code

while preserving formatting, comments, and preprocessing



directives (like include lines). This means that a refac-

toring tool can perform simple textual changes, but it can

also perform much more complex changes requiring whole-

program name binding analysis, control flow analysis, and

so forth.

The following list is not exhaustive but certainly repre-

sentative of the types of features that a refactoring tool could

help eliminate from Fortran programs. This list of features

is intentionally ambitious; our intent is to illustrate what is

possible, not to argue that all of these changes should nec-

essarily be made.

• Eliminate fixed source form. A Fortran refactoring tool

contains all of the machinery needed to build a fixed-

to-free form converter that maintains comments and

formatting. Fixed form source is already an obsoles-

cent feature in Fortran 2003 [11, §B.2.6], indicating

the standardization committee’s intent to delete it in a

future revision of the standard. A tool to reliably con-

vert fixed to free form will be essential for easing this

transition on large code bases.

• Reserve keywords. Using keywords like if and

while as variable names is generally considered poor

practice, and failing to make these reserved words

makes implementing Fortran parsers difficult. Renam-

ing identifiers is a canonical example of refactoring;

building a tool to identify such names and change their

names to non-keywords could allow keywords to be

reserved in a future revision of the standard.

• Replace common blocks and block data subprograms

with module variables. In the simplest version of this

transformation, each (named or unnamed) common

block is replaced with a module containing a list of the

same variables. The common statement (or include

line) is removed and replaced with a use statement for

the new module. Block data subprograms can be

replaced with specification statements and initializers

in the new module. Subsequent refactorings could be

used to encapsulate these variables, if desired.

• Require explicit interface blocks; eliminate

external statements. Fortran allows external sub-

programs to be declared using interface blocks,

which specify the parameters and return type of the

subprogram, or they may simply be listed by name in

external declarations, in which case the parameters

and return type, if any, are unknown. In the latter case,

the compiler cannot verify anything about the subpro-

gram call—not even that the number of parameters is

correct—so this is also considered poor practice, as it

can lead to cryptic runtime errors. If the external sub-

programs are written in Fortran, it is straightforward

for a tool to generate interface blocks for them

and replace external statements with these; if they

are written in another language (e.g., C), the refactor-

ing tool would either need to (1) parse the C code and

attempt to generate equivalent interface blocks,

(2) infer interface blocks from the call sites in the

Fortran program, or (3) punt and require the user to

manually code interface blocks. (Of these, we be-

lieve option (2) has the most potential.)

• Require explicit variable declarations; eliminate

implicit statements. This is also straightforward

and is a refactoring already available in Photran. An

implicit none statement is added (potentially re-

placing an existing implicit statement), followed

by explicit type declaration statements for all variables

that were previously declared implicitly.

• Remove other specification statements. Fortran al-

lows most variable attributes—public, private,

pointer, target, allocatable, intent,

optional, save, dimension, parameter, and

many C language-binding attributes—to be included

in a variable’s type declaration statement, or they may

be given in separate statements. Arguably, spread-

ing a variable’s declaration across several statements

is poor practice, since a programmer must read the

entire list of specification statements to determine all

of the attributes assigned to a variable. Metcalf and

Reid [13, p. 243] note this in the particular case of the

dimension attribute: Omitting array dimension in-

formation from the type declaration statement makes

it “look like a declaration of a scalar.” Replacing

these specification statements with equivalent clauses

in a variable’s type declaration statement (assuming

implicit none) is straightforward.

• Remove entry statements. The entry statement al-

lows several entrypoints to be declared within a sin-

gle subprogram. The intent it to allow several proce-

dures to share variables and/or code. A better practice

is to create a module and make each entrypoint into a

module procedure [13, p. 240]. We will not attempt to

specify this refactoring in detail, although we note that

it is a somewhat more complicated variant of Extract

Subprogram, requiring an analysis of what variables

and what code is shared among entrypoints, and po-

tentially replacing goto statements with subprogram

invocations.

• Remove computed goto. The computed goto is

equivalent to a case construct [13, p. 288]. A refac-

toring tool can always substitute a case construct

containing goto statements for a computed goto.

However, it can also use a control flow analysis to de-

termine if the statements branched to can be moved



into the case construct, eliminating the goto state-

ments entirely. More empirical work would be neces-

sary to determine other idiomatic uses.

• Remove arithmetic if, largely similar to removing

computed goto.

• Remove character*n. This is equivalent to

character(len=n) and can be removed through

a simple syntactic substitution.

• Replace statement functions with internal functions.

This is a much simpler variant of the Extract Method

refactoring.

• Remove old-style do loops. These are entirely equiva-

lent to do constructs. If the loop is terminated with a

continue statement, this statement can be replaced

with end do; if it is terminated with another exe-

cutable statement, the end do must be inserted after

that statement. The statement label may be removed if

it is not referenced elsewhere.

4. From Dialect to Dialect, Library to Library

The role of refactoring tools in language evolution is not

necessarily limited to standardized, general-purpose pro-

gramming languages.

Even if all obsolete constructs are eliminated, the Fortran

language is still large; each application and each program-

mer will use a subset of the language, since there are often

several ways to accomplish the same thing, and which way

is preferable depends on the application and the program-

mer. For example, two matrices can be added using array

notation or nested loops, arrays may be statically or dynam-

ically allocated, subprograms may be internal or external,

and modules are often interchangeable with singleton [7]

objects.

The choice of which constructs to use (and which to

omit) constitutes a dialect. Like the Fortran language it-

self, the dialect used for a particular application (or by a

particular programmer) may evolve over time. Refactoring

tools can often be used to translate between equivalent con-

structs, and thus can facilitate the evolution of an individ-

ual’s dialect of Fortran.

Similarly, the objects, procedures, and constants pro-

vided by a framework or library comprise a different

kind of “language.” For example, MPI COMM WORLD and

MPI SEND are part of the “language” of MPI.2 These lan-

guages tend to evolve, too; for example, Dig et al. [4] an-

alyzed the evolution of several Java APIs, observing that

2An API, like that of MPI, provides a vocabulary and has both a syntax

(inherited from Fortran) and semantics, and therefore meets most common

definitions of “language.”

80% of the API changes could be expressed as (automated)

refactorings.

5. Case Study: AMPI

We have not attempted to design or implement a com-

prehensive refactoring tool for Fortran language evolution.

However, we have built a tool with some of this functional-

ity which is intended for the specific purpose of converting

programs to run on Adaptive MPI (AMPI). In doing so, we

have dealt with several specific instances of the aforemen-

tioned problems: Our tool automatically converts Fortran

programs to a dialect absent of common blocks, save vari-

ables, and other global data. In this section, we will describe

the unique requirements of AMPI, how our tool transforms

Fortran programs to satisfy its requirements, and how these

transformations fit into the more general subject of Fortran

program evolution.

5.1. Overview of AMPI

Adaptive MPI [9] is an implementation of the Message

Passing Interface (MPI) standard [12]; it currently imple-

ments all of MPI 1.1 and some of the MPI 2 standard. AMPI

runs on the Charm++ Runtime System [2] and provides MPI

programs with dynamic load balancing, virtualization, and

checkpointing, among other features.

MPI programs usually assume that each MPI process

will be a distinct operating system process—usually each

will run on a separate processor of a multi-processor

system—and thus there is no shared address space. How-

ever, to achieve dynamic load balancing, AMPI may map

several MPI processes to different threads on a single pro-

cessor, giving them a shared address space. This can lead

to unexpected behavior, since different processes could be

accessing the same copies of global variables, breaking the

programmer’s original intent.

The authors of AMPI propose two solutions to avoid

problems associated with this sharing of global data [1]: au-

tomatic globals swapping and manual global variables pri-

vatization. Automatic globals swapping uses the operating

system’s facilities to swap one set of global variables for an-

other on each thread context switch; it does not require any

changes to the original MPI program but is available only

on x86 and x86 64 platforms that fully support Executable

and Linking Format (ELF). Manual global variables privati-

zation is a more universal solution, but it requires changing

the original MPI program. As our tool implements this pro-

cedure for Fortran programs, we will describe it in more

detail.



5.2. Fortran Global Variables Privatization

Global variables are those variables that can be accessed

by more than one subprogram (including several calls of the

same subprogram) and are not passed as arguments of these

subprograms. In Fortran 90 global variables are module

variables, variables that appear in common blocks, and local

variables that are declared with the save attribute—these

retain their values between subprogram calls (like static

variables in C).

Privatizing global variables means giving every process

its own copy of these global variables. Again, this happens

automatically in most MPI implementations since each MPI

process is a separate operating system process, but AMPI

requires that it be done manually. One way to do this is,

essentially, to put all of the global variables into a large

object (a derived type in Fortran, or struct in C), and

then to pass this object around between subprograms. Each

process can be given a different copy of this object. Fig-

ure 1 presents an example of privatizing the global variable

counter, which is the only global variable in the origi-

nal program. (According to the Fortran standard, the local

variable counter is implicitly a save variable because

its declaration includes an initializer.)

A more detailed description of the global variables pri-

vatization procedure implemented by our tool is as follows.

First, a new derived type is declared in a new module. This

derived type contains a component for every global variable

in the program. A statement to dynamically allocate an ob-

ject of this type is inserted after the call to MPI Init, giv-

ing each process its own instance of the object. A pointer

to this type is passed as an argument to every subprogram.

Throughout the program, every access to a global variable

is replaced with an access to the corresponding field of the

derived type. Finally, the declarations of global variables

are removed from the program.

We implemented global variables privatization for For-

tran using the refactoring infrastructure in Photran, an

Eclipse-based IDE for Fortran [14]. Although the tool is

intended to be used as a preprocessor immediately before

compilation (so the programmer never sees the privatized

version of the program), it is also accessible as a refactor-

ing within the IDE.3 The privatization procedure proceeds

in four passes:

1. Stubs are generated for the derived type and the mod-

ule that contains this type. Their names should not

3On a technical note, it might seem that global variables privatization

is not a refactoring, because the original program (before privatizaton)

and the transformed program (after privatization) behave differently on

AMPI. However, this is because the AMPI runtime changes the seman-

tics of global variables. The original and transformed programs have the

same semantics relative to the Fortran language and relative to any ordinary

implementation of MPI, so we believe the transformation is a refactoring.

conflict or shadow names of other entities in the pro-

gram.

2. Subprograms are processed. An extra parameter is

added to each subprogram and each call site within

its body. Components for save variables are inserted

into the derived type, accessed to these variables are

replaced with accesses to the derived type component,

and finally the save variables are deleted from the

subprogram.

3. Module variables are eliminated in a manner similar to

save local variables.

4. Finally, common blocks are eliminated similarly.

These code transformations are composed from many

smaller pieces, which we have implemented as refactorings

in Photran. Among these refactorings are eliminating com-

mon blocks, moving “saved” local variables out of a sub-

program, transforming public variables of a module into the

corresponding fields of a derived type, and adding a new

parameter to a subprogram.

5.3. Returning to Language Evolution

The global variables privatization procedure corrects the

behavior of programs that would otherwise execute “incor-

rectly” on AMPI by converting them to a dialect of Fortran

that does execute correctly: One which forgoes common

blocks, save variables, and module variables in favor of

components in a derived type.

As we noted earlier, eliminating common blocks is one

example of a refactoring that eliminates uses of an obsolete

language construct. Similarly, replacing module variables

with derived type components is one step in replacing mod-

ules with objects. Modifying procedures to receive and pass

an additional parameter of a derived type is one step in con-

verting procedural Fortran to object-oriented Fortran; in the

latter case, the extra parameter is the self object.

6. Reflection

Our experiences implementing refactorings in Photran,

including those for AMPI, support our belief that refactor-

ing is a viable technical strategy for language evolution in

many cases. Nevertheless, there are several potential obsta-

cles.

First, some language features simply cannot be elimi-

nated automatically, or automatic elimination gives a less

than optimal result. For example, as noted in §3, com-

puted gotos can be replaced with case constructs. Al-

though this eliminates the construct, the resulting code

is more verbose and no more readable than the original.



PROGRAM MyProgram

include ’mpif.h’

INTEGER :: ierr

CALL MPI_Init(ierr)

CALL count_calls

CALL count_calls

CALL MPI_Finalize(ierr)

END PROGRAM MyProgram

SUBROUTINE count_calls

INTEGER :: counter = 0

counter = counter + 1

print *, ’I was called ’, counter, ’ times.’

END SUBROUTINE count_calls

MODULE GeneratedModule

TYPE GeneratedType

INTEGER :: counter = 0

END TYPE GeneratedType

END MODULE GeneratedModule

SUBROUTINE MPI_Main

USE GeneratedModule

include ’mpif.h’

INTEGER :: ierr

TYPE(GeneratedType), POINTER :: var

CALL MPI_Init(ierr)

ALLOCATE(var)

CALL count_calls(var)

CALL count_calls(var)

CALL MPI_Finalize(ierr)

END SUBROUTINE MPI_Main

SUBROUTINE count_calls (var)

USE GeneratedModule

TYPE(GeneratedType) :: var

var%counter = var%counter + 1

print *, ’I was called ’, var%counter, ’ times.’

END SUBROUTINE count_calls

Figure 1. Example of the code transformation that privatizes the “saved” local variable counter of

the subroutine count calls. The original code of an MPI program is on the left; the refactored code,

which can be executed on AMPI, is shown on the right.

Turning it into readable code would require a more ad-

vanced analysis, and it would likely require heuristics on

common usage patterns. Similarly, converting procedu-

ral programs to object-oriented programs requires creativ-

ity and domain knowledge, so one should not expect a

“make program object-oriented” refactoring.4 In both of

these cases, the old and new constructs represent different

styles of programming—unstructured vs. structured, proce-

dural vs. object-oriented—and the inadequacy of tools is

due to the lack of a 1–1 correspondence between old and

new constructs.

Second, in the specific case of Fortran, widespread use

of language extensions and preprocessors may preclude au-

tomated source code transformation. Vendor-specific lan-

guage extensions are problematic because a tool cannot re-

liably transform a programs containing constructs it does

not “understand.” Refactoring a program containing C pre-

processor directives is complicated but tractable [8]; unfor-

tunately, Fortran programmers do not just use the C prepro-

cessor. Some use M4. Some use M5. IBEAM [10] uses a

custom preprocessor written in Python to concatenate mod-

ules together, a makeshift attempt at inheritance. Plenty of

makefiles use sed. Again, a refactoring tool cannot “under-

stand” the parts of the program that are preprocessed into

something else before the compiler sees them; there is no

4However, many of the steps in making a program object-oriented are

algorithmic and are excellent candidates for implementation as refactor-

ings.

guarantee that it will analyze and transform them correctly

unless it is specifically programmed to do so.

Although some empirical study is necessary, we believe

that these are surmountable problems. The biggest obsta-

cle to language evolution through refactoring is cultural. It

has not been attempted before, and the Fortran community

has often been resistant to ideas not already proven in other

circles. Only recently have refactoring tools been adopted

widely in the Java and C# communities; many programmers

still have a difficult time trusting a tool to rewrite parts of

their source code. And perhaps they should; these tools are

often quite buggy [3]. This is not a problem if the program

contains an extensive test suite (as many Java and C# pro-

grams do); unfortunately, this is not the case for many For-

tran programs. Finally, many Fortran programs are in gov-

ernment labs, running highly classified simulations in strict

security environments under heavy bureaucracies.

These social and cultural obstacles are also surmount-

able, but they will require the momentum of a community.

Gaining community interest will require a robust, capable

tool. Building this tool will require a significant effort, but

we believe it has great promise. We hope that others in the

Fortran community will feel the same.

This work was supported by the United States Department of Energy under

Contract No. DE-FG02-06ER25752 and by the National Science Founda-

tion under award #0725070. The authors would like to thank Nicholas

Chen, Isaac Dooley, Brian Foote, and Daniel Overbey for discussions that

contributed to this paper.



References

[1] Adaptive MPI Manual. http://charm.cs.uiuc.edu/manuals/

html/ampi/manual.html.

[2] The Charm++ Runtime System. http://charm.cs.uiuc.edu/

tutorial/CharmRuntimeSystem.htm.

[3] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated

testing of refactoring engines. In ESEC-FSE ’07: Proceed-

ings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering, pages 185–194,

New York, NY, USA, 2007. ACM.

[4] D. Dig and R. Johnson. How do APIs evolve? A story of

refactoring. Journal of Software Maintenance and Evolu-

tion: Research and Practice, 18(2):83–107, 2006.

[5] Fortran Automatic Coding System for the IBM 704: Pro-

grammer’s Reference Manual. http://www.fortran.com/

FortranForTheIBM704.pdf.

[6] M. Fowler. Refactoring: improving the design of exist-

ing code. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley, Reading, Massachusetts, January 1995.

[8] A. Garrido. Program refactoring in the presence of prepro-

cessor directives. PhD thesis, Champaign, IL, USA, 2005.

Advisor: Ralph Johnson.

[9] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. In Pro-

ceedings of the 16th International Workshop on Languages

and Compilers for Parallel Computing (LCPC 2003), LNCS

2958, pages 306–322, College Station, Texas, October 2003.

[10] IBEAM. http://www.ibeam.org.

[11] International Organization for Standardization and Interna-

tional Electrotechnical Commission. ISO/IEC 1539-1:2004:

International standard: information technology, program-

ming languages, Fortran. Fourth edition, 2004.

[12] Message Passing Interface Forum. http://www.mpi-

forum.org/.

[13] M. Metcalf and J. Reid. Fortran 90/95 Explained. 1999.

[14] Photran - An Integrated Development Environment for For-

tran. http://www.eclipse.org/photran/.

[15] Professor Forsythe. http://infolab.stanford.edu/pub/voy/

museum/pictures/display/floor1.htm.


