
Differential Refactoring Engines

Jeffrey L. Overbey and Ralph E. Johnson
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N. Goodwin Ave. MC 258

Urbana, IL 61801
{overbey2,johnson}@cs.uiuc.edu

ABSTRACT

The complexities of production programming languages
make refactoring tools difficult to develop and notoriously
bug-ridden in practice. This paper proposes a new design for
refactoring tools in which the refactored program is analyzed
after it has been transformed rather than before. Instead
of checking an ad hoc set of preconditions, refactorings
simply transform the program; then, a generic analysis
procedure attempts to determine whether behavior was
preserved. This makes the specification and implementation
of automated refactorings both simpler and more robust. We
used this technique to construct 18 refactorings across three
target languages. Compared with traditional specifications
of these refactorings, the total number of precondition
checking steps decreased by nearly 90%, and the types of
errors automatically detected include some highly nontrivial
bugs previously identified in the literature.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.3.4 [Programming Languages]: Processors

General Terms

Languages

Keywords

Program representation, refactoring

1. INTRODUCTION
The most common refactorings are simple program trans-

formations, at least conceptually. Rename, Extract, Move,
Change Signature, Inline, Encapsulate, Pull Up, Push
Down: all of these are, in essence, sophisticated variations on
find-and-replace or cut-and-paste. This apparent simplicity
is deceptive, however. Consider the Eclipse JDT—an
extremely popular, very mature tool frequently cited in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11 Honolulu, Hawaii USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

refactoring literature (e.g., [1, 7, 8, 11, 12]). It implements
all of these refactorings. How many have known errors in
their implementations? All of them.

Automated refactoring tools operate on source code,
and modern programming languages are complex, so some
complexity in a refactoring tool is inevitable. However, the
plethora of bugs in current tools is not a necessary conse-
quence. This paper suggests that much of the complexity
and error in automated refactoring tools can be mitigated by
fundamentally changing their design.

1.1 The Problem with Preconditions
An automated refactoring has two parts. One part is

the transformation—the change it makes to the source
code. The other is a set of preconditions which are checked
before the transformation is applied. The preconditions
guarantee that the transformation will produce a program
that compiles and executes with the same behavior as the
original program.

Designing a sufficient set of preconditions is extremely dif-
ficult. The author of the refactoring must exhaustively con-
sider every language feature, every syntactic construct, every
extragrammatical restriction, every semantic rule. . . and
somehow guarantee that the transformation is incapable of
producing an error. Although such assurances are possible
in theory, the size and complexity of modern programming
languages makes them tremendously difficult to make in
practice. Consider Java: Even a “simple” refactoring like
Rename must consider naming conflicts, namespaces, qual-
ifiers, shadowing, reserved words, inheritance, overriding,
overloading, constructors, visibility, inner classes, reflection,
externally-visible names, and “special” names such as main.

1.2 The Differential Solution
In this paper, we will observe that preconditions guarantee

three basic properties—input validity, compilability, and
behavior preservation—and use this observation to propose
a new design for refactoring engines. In this design,
compilability and preservation preconditions are not checked
explicitly. Instead, the transformation is performed, and
afterward the refactoring engine attempts to determine
whether compilability and preservation were maintained by
contrasting a semantic model of the transformed program
with a similar model of the original program. We call this
design a differential refactoring engine. It has two major
advantages over traditional designs:

• A surprisingly large number of precondition checks can
be eliminated. Often, the refactoring does not need

to explicitly check any compilability or preservation
preconditions at all. This greatly simplifies the speci-
fication and implementation of these refactorings.

• Source code is analyzed after transformation, as well
as before. This makes it possible for the tool to detect
certain errors in the transformed code, and it provides
a sanity check for the transformation, notifying the
user if a buggy transformation will make erroneous
changes to their code.

The primary contribution of this paper is the idea that
refactorings can be implemented by checking for compil-
ability and preservation after transformation in a generic
way—i.e., compilability and preservation can be checked
in the same way for every refactoring. This, in turn,
simplifies individual refactorings by eliminating the need to
explicitly design preconditions to check for compilability and
preservation. Following a discussion of precondition check-
ing in §2, the general structure of a differential refactoring
engine is given in §3. To illustrate the feasibility of the
differential approach, we propose one possible design in §5
and demonstrate that it is sufficient to describe common
refactorings in §6.

2. PRECONDITIONS AND REFACTORING

2.1 Validity, Compilability, and Preservation
A refactoring’s preconditions determine conditions under

which the program transformation will preserve behavior.
This means that preconditions guarantee three properties:

1. Input validity. All input from the user is legal; it
is possible to apply the transformation to the given
program with the given inputs.

2. Compilability. If the transformation is performed,
the resulting program will compile; it will meet all
the syntactic and semantic requirements of the target
language.

3. Preservation. If the transformation is performed
and the resulting program is compiled and executed,
it will exhibit the same runtime behavior as the
untransformed program.

2.2 A Priori vs. A Posteriori Checking
Now, consider how refactoring tools actually implement

refactorings: Preconditions are checked, and if they pass,
the transformation is applied. . . and the refactoring is fin-
ished. We will call this a priori precondition checking,
when preconditions are checked before transformation. An
alternative is a posteriori precondition checking: checking
preconditions after the program has been transformed.

To our knowledge, automated refactoring tools use a
priori precondition checking exclusively in practice. Un-
fortunately, it has two major disadvantages:

• Since the program is not analyzed after it has been
transformed, there are no “sanity checks” on the refac-
toring. . . not even a guarantee that the transformed
program will parse.

• A priori checks make decisions based on what a
transformation is expected to do. If there is an error
in the transformation, or if it is changed at some point
in time, the preconditions may not be sufficient.

The case for a posteriori checking is bolstered when we
consider the three properties that preconditions guarantee.
Clearly, input validation needs to be performed a priori,
since it may not even be possible to perform a transforma-
tion if the user provides invalid input. But compilability is
actually quite easy to determine a posteriori; essentially, it
means running the program through a compiler front end.
And it turns out that preservation preconditions can often
be checked a posteriori as well.

3. DIFFERENTIAL REFACTORING

ENGINES
The basic distinction between a traditional refactoring

engine and a differential refactoring engine is illustrated in
Figure 1. A traditional refactoring engine proceeds in three
steps (Figure 1(a)):

1. Source code is analyzed, and a program representation
is constructed.

2. Preconditions are checked to validate user input and
to ensure compilability and behavior preservation.

3. The source code is modified.

In contrast, a differential refactoring engine proceeds in
seven steps (Figure 1(b)):

1. Source code is analyzed, and a program representation
is constructed.

2. A semantic model is constructed from this program
representation. This is called the initial model.

3. User input is validated.

4. The source code is modified.

5. The modified source code is analyzed, and a new
program representation is constructed. Compilability
errors are detected.

6. A semantic model is constructed from this new pro-
gram representation. This is called the derivative
model.

7. A preservation analysis is performed: The derivative
model is compared against the initial model. This is
used to (approximately) determine whether or not the
transformation preserved behavior.

What distinguishes a differential refactoring engine from a
traditional refactoring engine is how it ensures compilability
and preservation. Compilability is ensured by essentially
performing the same checks that a compiler front end would
perform. Behavior preservation is ensured by building
semantic models of the program before and after it is
transformed: If the two models are determined to be
equivalent, then the transformation is considered to be
behavior-preserving.

At first glance, replacing a three-step process with a seven-
step process does not appear to simplify things. However, it
actually makes individual refactorings much simpler. This
is because the compilability and preservation checks are
generic: They are implemented once, and then reused in
every refactoring. In fact, most of the infrastructure needed
to implement them is already available in a traditional
refactoring tool.

It is virtually impossible to perform any complicated
refactorings without a parser, abstract syntax tree (AST),

Initial

Semantic Model

Compare

Model2

4 5

6

7

Initial

Source Code

Initial Program

Representation

Analyze

Modify

Source Code

1

2

Check

Preconditions

3

(a)

(b)

User Input }
Modified

Source Code

Initial

Source Code

Initial Program

Representation

Modify

Source Code

Validate

Input

3User Input }
Modified

Source Code

Derivative Program

Representation

Derivative

Semantic Model

Model

Analyze

1 Analyze

Figure 1: Operation of (a) a traditional refactoring engine and (b) a differential refactoring engine

and name binding information (symbol tables). And a
type checker is usually needed to resolve name bindings
for members of record types, as well as for refactorings
like Extract Local Variable. So, refactoring tools generally
contain (most of) a compiler front end. Steps 1 and 5 are
simply running source code through this front end. Checking
for compilability in Step 5 is natural since a compiler front
end would often perform these checks anyway.

Similarly, all refactoring tools require some static analy-
ses, such as name binding and control flow computations.
Implementing a differential refactoring engine, then, simply
involves reusing these to populate the semantic models.

The only component of a differential refactoring engine
that is truly unique is the preservation analysis. Clearly,
the most difficult part of building a differential refactoring
engine is choosing an appropriate semantic model and
finding a preservation analysis algorithm that balances
speed, correctness, and generality.

4. PRESERVATION AND REFACTORING
Before attempting to choose a semantic model and design

a preservation analysis, it is helpful to consider what,
exactly, refactorings try to preserve. The obvious answer is,
“Refactorings preserve the program’s observable behavior.”
That is how refactoring is defined in the literature.

In fact, automated refactorings do not guarantee behavior
preservation for every program. Rather, they make certain
assumptions about the program (and the user input) and
guarantee behavior preservation only when those assump-
tions are met. Rename may not preserve behavior in a
program that uses reflection. Extract Method may not
preserve behavior in a program that accesses its stack trace.
When a method is polymorphic, Inline Method may not
preserve behavior if the user chooses to inline the “wrong”
implementation of the method.

Why is this? Automated refactorings are based on static
analyses, and it is often difficult or impossible to determine
statically whether these behaviors occur.

So, it is helpful to view “preservation” differently in the
context of an automated tool: An automated refactoring
preserves certain aspects of a program analysis. Rename
preserves a name binding relationship: It ensures that
every identifier refers to the “same” declaration before and
after transformation. Pull Up Method preserves the same
relationship while also preserving a relationship between
classes and methods they override. Extract Method and
Extract Local Variable preserve control flow and def-use
chains at the extraction site.

It is important to note that “certain aspects” of a static
analysis are preserved, not “all aspects.” For example,
consider Extract Method: local variables become param-
eters in the extracted method, so it does not completely
preserve name binding relationships. Nor does Encapsulate
Variable, which redirects variable accesses through accessor
and mutator methods.

In sum, two points should drive our choice of a semantic
model and preservation analysis:

1. The semantic model must be able to represent the most
common static analyses needed for refactorings: name
binding relationships, control flow, and du-chains.

2. The preservation analysis must be able to accommo-
date or ignore some expected differences between the
semantic models.

5. DIFFERENTIAL REFACTORING WITH

PROGRAM GRAPHS
In the remainder of this paper, we will discuss a par-

ticular type of differential refactoring engine which uses a
program graph as both its program representation and its
semantic model. Although we have found this to be quite
satisfactory, it is only one possible semantic model; we
encourage investigation of other program representations,
semantic models, and preservation analyses. In Section 3, we
intentionally made the definition of a differential refactoring
engine fairly abstract; the concept is, in general, not limited

to a particular program representation, semantic model, or
preservation analysis.

The remainder of this section is organized as follows.
Program graphs are described in §5.1. §5.2 describes how
program graphs can be used as the program representation
for a refactoring tool. §5.3–5.4 describe a preservation
analysis on program graphs and how it can be used as the
basis of a differential refactoring engine. Safe Delete and
Pull Up Method are used as examples in §5.5–5.6.

5.1 Program Graphs
One program representation which has enjoyed success in

the refactoring literature [6, 12] is called a program graph. A
program graph “may be viewed, in broad lines, as an abstract
syntax tree augmented by extra edges” [6, p. 253]. These
“extra edges”—which we will call semantic edges—represent
semantic information, such as name bindings, control flow,
inheritance relationships, and so forth. Alternatively, one
might think of a program graph as an AST with the graph
structures of a control flow graph, du-chains, etc. superim-
posed; the nodes of the AST serve as nodes of the various
graph structures.

Class

 name: "Test2"

 body:

 (1) Field

 type: int

 name: "field"

 initialValue:

 IntConstant

 value: 0

 (2) Method

 returnType: void

 name: "fun"

 arguments: (none)

 body:

 (i) LocalVariable

 type: int

 name: "i"

 initialValue:

 IntConstant

 value: 0

 (ii) PostIncrement

 variable: "i"

 (iii) PostIncrement

 variable: "field"

 (iv) MethodInvocation

 name: "System.out.println"

 arguments:

 VariableAccess

 variable: "i"

b
in
d
in
g

b
in
d
in
g

b
in
d
in
g

c
o
n
tr
o
l
fl
o
w

c
o
n
tr
o
l
fl
o
w

c
o
n
tr
o
l
fl
o
w

c
o
n
tr
o
l
fl
o
w

d
e
f-
u
s
e
 (
1
)

d
e
f-
u
s
e
 (
2
)

class Test2 {

 int field = 0;

 void fun() {

 int i = 0;

 i++;

 field++;

 System.out.println(i);

 }

}

Figure 2: Example Java program and corresponding
program graph

An example of a Java program and a plausible program
graph representation are shown in Figure 2. The underlying
abstract syntax tree is shown in outline form; the dotted
lines are the extra edges that make the AST a program
graph. We have shown three types of edges. Name binding
edges link the use of an identifier to its corresponding
declaration. Within the method body, control flow edges
form the (intraprocedural) control flow graph; the method
declaration node is used as the entry block and null as the
exit block. Similarly, there are two du-chains, given by def-
use edges.

Program graphs are appealing because they summarize
the “interesting” aspects of both the syntax and semantics

of a program in a single representation, obviating the need
to maintain a mapping between several distinct representa-
tions. Moreover, they are defined abstractly: the definition
of a program graph does not state what types of semantic
edges are included. A person designing a program graph
is free to include (or exclude) virtually any type of edge
imaginable, depending on the language being refactored and
needs of the refactorings that will be implemented. We have
found five types of edges to be useful: name binding, control
flow, du-chains, override edges (which link an overriding
method to the overridden implementation in a superclass),
and inheritance edges (which link a class to the concrete
methods it inherits from a superclass).

5.2 Program Graphs and AST Manipulation
In the end, refactoring tools manipulate source code.

However, when building a refactoring, it is helpful to think
of manipulating the AST instead. Adding a node means
inserting source code. Replacing a node means replacing
part of the source code. And so on.

This does not change when a program graph is used in
a refactoring tool. A program graph is always derived from
an AST. The content of the AST determines what semantic
edges will be superimposed. Semantic edges cannot be
manipulated directly; they can only change as a side effect
of modifying the AST.

In fact, that observation will serve as the basis of our
preservation analysis. When we modify an AST, we will
indicate which semantic edges we expect to be preserved
and which ones we expect to change. Then, after the source
code has been modified, we will determine what semantic
edges were actually preserved and compare this with our
expectations.

5.3 Preservation in Program Graphs
This raises a question: What does it mean for a semantic

edge to be “preserved” when an AST is modified?
We would like to say: If both the modified and unmodified

ASTs contain an edge with the same type and the same
endpoints, that edge has been preserved. Unfortunately, it
is not clear what the “same” endpoints are, since the AST
has been modified, and the endpoints are AST nodes.

Consider a refactoring which replaces the expression x−x

with the constant 0. When applied to the expression 3+(x−
x), this corresponds to the following tree transformation.

+

−3

xx

+

03

When a subtree is changed (i.e., added, moved, removed,
or replaced) in an AST, we will call that the affected subtree.
A gray triangle surrounds the affected subtrees in the figure
above. Using that figure as an example, consider how AST
nodes in the unmodified AST correspond with nodes in the
modified AST:

• There is an obvious correspondence between AST
nodes outside the affected subtrees, since those parts
of the AST were unaffected by the transformation.

• As a whole, the affected subtree before the transfor-
mation corresponds to the affected subtree after the

transformation.

• In general, there is no correspondence between nodes
inside the affected subtrees.

Recall that our goal is to determine if a semantic edge has
the “same” endpoints before and after an AST transforma-
tion. Clearly, this is easy when an endpoint is outside the
affected subtree, or if that endpoint is the affected subtree
itself. But if the endpoint is inside the affected subtree, we
cannot determine exactly which node it should correspond
to. . . except that, if it corresponds to anything, that node
would be in the other affected subtree.

Since we cannot determine a correspondence between
AST nodes inside the affected subtree, we will collapse
the affected subtrees into single nodes. This makes the
AST before transformation isomorphic to the AST after
transformation.

collapsedcollapsed

+

3

+

3

Now, suppose we have superimposed semantic edges to
form a program graph. When we collapse the affected
subtree to a single node, we will also need to adjust the
endpoints of the semantic edges accordingly:

• When an affected subtree is collapsed to a single node,
if any semantic edges have an endpoint inside the
affected subtree, that endpoint will instead point to
the collapsed node.

Note, in particular, that if an edge has both endpoints
inside the affected subtree, it will become a self-loop on
the collapsed node. Also, note that a program graph is
not a multigraph: If several edges have the same types and
endpoints in the collapsed graph, they will be merged into
a single edge.

Collapsing the affected subtree in a program graph actu-
ally has a fairly intuitive interpretation: If we replace one
subtree with a different subtree that supposedly does the
same thing, then the new subtree should interface with its
surroundings in (mostly) the same way that the old subtree
did. That is, all of the edges that extended into the old
subtree should also extend into the new subtree, and all
of the edges that emanated from the old subtree should
also emanate from the new subtree. There may be some
differences within the affected subtree, but the “interface”
with the rest of the AST stays the same.

In some cases, we will find it helpful to replace one
subtree with several subtrees (or, conversely, to replace
several subtrees with one). For example, Encapsulate
Variable removes a public variable, replacing it with a
private variable, an accessor method, and a mutator method.
In these cases, we have an affected forest rather than a single
affected subtree. The preservation rule is essentially the
same: All of subtrees in the affected forest are collapsed into
a single unit. When one subtree is replaced with several, this
captures the idea that, if an edge extended into the original
subtree, then it should extend into one of the subtrees in
the affected forest. In the case of Encapsulate Variable,
this correctly models the idea that every name binding that
pointed to the original (public) variable should, instead,
point to either the new (private) variable, the accessor
method, or the mutator method.

5.4 Specifying Preservation Requirements
Now that we have established how to determine whether

a semantic edge has been preserved across a transformation,
we turn to a different question: How can we express which
semantic edges we expect to be preserved and which ones
we expect to change?

5.4.1 Edge Classifications

From the above description, we can see that whether we
want to preserve an edge depends on its type as well as
its relationship to the affected subtree. Therefore, it is
helpful to classify every semantic edge as either internal
(both endpoints of the semantic edge occur within the
affected subtree), external (neither endpoint occurs within
the affected subtree), incoming (the semantic edge has a
source outside the affected subtree and a sink inside it), or
outgoing (the source is inside the affected subtree, and the
sink is outside it).

5.4.2 Notation

Now, we can establish some notation. To indicate what
edges we (do not) expect to preserve, we must indicate three
things:

1. The type(s) of edges to preserve. We will use the
letters N , C, D, O, and I to denote name binding,
control flow, du-chain, override, and inheritance edges,
respectively. (Note, however, that program graphs
may contain other types of edges as well, depending on
the language being refactored and the requirements of
the refactorings being implemented.)

2. The classification(s) of edges to preserve. We will
use ←, →, 	, and × to indicate incoming, outgoing,
internal, and external edges, respectively. We will use
↔ as a shorthand for describing both incoming and
outgoing edges.

3. Whether we expect the transformation to introduce
additional edges or remove existing edges. If additional
edges may be introduced, we denote this using the
symbol ⊇ (i.e., the transformed program will contain
a superset of the original edges). If existing edges may
be eliminated, we denote this by ⊆. If edges may be
both added and removed, then we cannot effectively
test for preservation, so those edges will be ignored;
we indicate this using the symbol 6=. Otherwise, we
expect a 1–1 correspondence between edges, i.e., edges
should be preserved exactly. We indicate this by =.

5.5 Example: Safe Delete (Fortran 95)
To make these ideas more concrete, let us first consider

a Safe Delete refactoring for Fortran which deletes an
unreferenced internal subprogram.1

The traditional version of this refactoring has only one
precondition: There must be no references to the subpro-
gram except for recursive references in its definition.

What would the differential version look like? To deter-
mine its preservation requirements, it is often useful to fill
out a table like the following:

1
A slightly more complete and much more detailed specification for

this refactoring is given in the technical report [9] described in the
Evaluation section of this paper.

N C D
← = = =
→ ⊆ = =
	 ⊆ ⊆ ⊆

× = = =

When a subprogram is deleted, all of the semantic edges
inside the deleted subroutine will, of course, disappear, and
if the subprogram references any names defined elsewhere
(e.g., other subprograms), those edges will disappear. Oth-
erwise, no semantic edges should change.

Notating preservation requirements in tabular form is
somewhat space-consuming, since in practice most cells
contain =. Therefore, we will use a more compact notation.
For each edge type, we will use subscripts to indicate which
cells are not =, i.e., what edges should not be preserved

exactly. For the above table, this would be N
→
⊆

	
⊆C

	
⊆D

	
⊆.

So, we can describe the differential version of this refac-
toring in a single step: Delete the subprogram definition,

ensuring preservation according to the rule N
→
⊆

	
⊆C

	
⊆D

	
⊆.

5.6 Example: Pull Up Method (PHP 5)
For a more interesting example, let us consider a Pull

Up Method refactoring for PHP 5, which moves a concrete
method definition from a class C into its immediate super-
class C

′.2

5.6.1 Traditional Version

Preconditions.

1. A method with the same name as M must not already
exist in C

′. If M were pulled up, there would be two
methods with the same name, or M would need to
replace the existing method.

2. If there are any references to M (excluding recursive
references inside M itself), then M must not have
private visibility. If it were moved up, its visibility
would need to be increased in order for these references
to be preserved.

3. M must not contain any references to the built-in
constants self or __CLASS__. If it were moved up,
these would refer to C

′ instead of C. (Note that PHP
contains both self and $this: The former refers to
the enclosing class, while the latter refers to the this
object.)

4. M must not contain any references to private members
of C (except for M itself, if it is private). These would
no longer be accessible to M if it were pulled up.

5. If M overrides another concrete method, no subclasses
of C

′ should inherit the overridden method. Pulling up
M would cause these classes to inherit the pulled up
method instead.

6. The user should be warned if M overrides another
concrete method. If M were pulled up into C

′, then M

would replace the method that C
′ inherited, changing

the behavior of that method in objects of type C
′,

although the user might intend this since he explicitly
chose to pull up M into C

′.

Transformation. Move M from C to C
′, replacing all

occurrences of parent in M with self.

2
Again, a more complete and detailed specification is available [9].

5.6.2 Differential Version

Preconditions. None.

Transformation. The transformation can be expressed as
the composition of two smaller refactorings:

1. Copy Up Method. Using preservation rule NO
	
⊇I,

copy the method definition from C to C
′, replacing

all occurrences of parent in M with self.

2. Delete Overriding Duplicate. Remove the original

method definition from C, with rule NO
	
⊆I
←
⊇.

Pictorially, the process is as follows. The affected forests are
highlighted in gray.

program

C' C

M

program

C' C

MM

overrides

program

C' C

M

Copy Up Del Dup

in
h
e
ri
ts

When the method is copied from C to C
′, an internal over-

ride edge will be introduced, hence O
	
⊇ in the preservation

rule. However, the new method in C
′ should not be inherited

by any subclasses, and all identifiers should bind to the same
names they did when the method was contained in C, so the

preservation rule is NO
	
⊇I. Once we have established that

no subclasses will accidentally inherit the pulled up method,
we can delete the original method from C. This will remove
the override edge introduced in the previous step, and C

will inherit the pulled up method, so the preservation rule

is NO
	
⊆I
←
⊇.

Now, consider how the differential version of this refac-
toring satisfies all of the traditional version’s preconditions.
Precondition 1 would be caught by a compilability check.
Preconditions 2–4 are simply preserving name bindings. A
program that failed Precondition 5 would introduce an in-
coming inheritance edge. If a program failed Precondition 6,
an outgoing inheritance edge from C

′ would vanish.
For the differential version, we redefined Pull Up Method

as the composition of two smaller refactorings. Whenever
this is possible, it is generally a good idea: It allows
preservation rules to be specified at a finer granularity; the
smaller refactorings are often useful in their own right; and,
perhaps most importantly, simpler refactorings are easier to
implement, easier to test, and therefore more likely to be
correct.

5.7 On Implementation
While eliminating traditional precondition checks clearly

makes refactoring specifications more concise, it makes
refactoring implementations equally concise. As we will
discuss in the next section, we implemented differential
refactoring engines in three refactoring tools, including
Photran, a refactoring tool for Fortran 95. Figure 3
gives complete source code for the Safe Delete refactoring
described above—i.e., no additional code is required except
for Photran’s existing infrastructure. Note that, since
the traditional precondition check does not need to be
performed—there is no need to explicitly check for references

to the procedure—the entire refactoring consists of just 30
lines of code.

public class SafeDeleteRefactoring
extends PreservationBasedSingleFileFortranRefactoring {

private ScopingNode nodeToDelete = null;

protected void doCheckInitialConditions (
RefactoringStatus status , IProgressMonitor pm)

{
ensureProjectHasRefactoringEnabled(status);

nodeToDelete = findSelected(ScopingNode.class);
if (!nodeToDelete.isSubprogram())

fail (”Please select a subprogram to delete . ”);
}

protected PreservationRule [] getEdgesToPreserve() {
return new PreservationRule [] {

preserveSubsetOutgoing(BINDING EDGE TYPE),
preserveSubsetInternal (ALL EDGE TYPES) };

}

protected void doTransform(RefactoringStatus status ,
IProgressMonitor pm) {

// Identify the affected subtree ...
preservation .markDelete(fileInEditor , nodeToDelete);
// ... then delete it from the AST
nodeToDelete.removeFromTree();

}

public String getName() { return ”Safe Delete”; }
}

Figure 3: Complete source code for a differential
Safe Delete implementation in Photran.

5.8 Summary
To summarize our proposal for a program graph-based

differential refactoring engine, we will recast it within the
framework of Section 3. Recall from Figure 1(b) that a
differential refactoring engine proceeds in seven steps. When
our program graph-based approach is employed, these steps
are as follows:

1. Source code is analyzed, and a program representation
is constructed (generally, AST).

2. The initial model (a program graph) is constructed
from this program representation.

3. User input is validated.

4. The source code is modified, and the preservation
analysis is notified what rule(s) to use.

5. The modified source code is analyzed, and a new
program representation is constructed (generally, an
AST). Compilability errors are detected, and the user
is notified.

6. The derivative model (a program graph) is constructed
from this new program representation.

7. A preservation analysis is performed. The affected
subtrees of the two program graphs (the initial model
and the derivative model) are collapsed. The semantic
edges in the derivative model are compared with
the initial model. If they do not satisfy the rules
indicated by the refactoring, the user is notified that
the transformation is unlikely to preserve behavior.

6. EVALUATION

Again, the primary contribution of this paper is the idea
of a differential refactoring engine, the idea that refactorings
can be implemented by checking for compilability and
preservation after transformation in a generic way. Our
program graph-based approach demonstrated that this idea
can be realized. Our two examples illustrated that it
could eliminate explicit precondition checks, simplifying
both the specification and implementation of refactorings. It
remains to be shown that the program graph-based approach
(and, more generally, the differential approach) can be
employed effectively to implement a wide range of common
refactorings. (Indeed, redesigning a refactoring engine would
be of little value if it only improved one or two refactorings.)
So we will focus the present evaluation on two questions:

Q1. Expressivity. Are the preservation specifications in
§5.4 sufficient to implement common automated refac-
torings?

Q2. Productivity. When refactorings are implemented
as such, does this actually reduce the number of
preconditions that must be explicitly checked?

For our evaluation, we implemented a differential refac-
toring engine in three refactoring tools: (1) Photran, a
popular Eclipse-based IDE and refactoring tool for Fortran;
(2) a prototype refactoring tool for PHP 5; and (3) a
similar prototype for BC. Implementing a program graph
representation and a differential refactoring engine at scale
is highly nontrivial. Unfortunately, due to space limitations,
a discussion and evaluation of the implementation is beyond
the scope of what can be discussed in the present paper; we
must reserve this for future work.

6.1 Identifying Common Refactorings
To effectively answer questions Q1 and Q2, we must first

identify what the most common automated refactorings are.
The best empirical data so far are reported by Murphy-Hill
et al. [8], who analyzed the frequency with which various
refactorings were used in Eclipse JDT. Table 1 shows several
of the top refactorings; the Eclipse JDT column shows
the popularity of each refactoring according to [8, Table 1,
“Everyone”], which represents data voluntarily collected
from more than 13,000 developers by the Eclipse Usage
Data Collector. For comparison, we have also listed the
availability of these refactorings in other popular refactoring
tools for various languages.

6.2 Q1: Expressivity
To evaluate the expressivity of our method, we imple-

mented 18 refactorings (see Table 2): 7 for Fortran, 9 for
BC, and 4 for PHP. Five of these refactorings are Fortran
or BC analogs of the five most frequently-used in Eclipse
JDT. Nine others are support refactorings, necessitated by
decomposition. The remaining refactorings were chosen for
other reasons. Add Empty Subprogram and Safe Delete
were the first to be implemented; they helped shape and
test our implementation. Introduce Implicit None preserves
name bindings in an “interesting” way. Pull Up Method
required us to model method overriding and other class
hierarchy issues in program graphs.

We divided refactorings among the three languages as
follows. We implemented all of the refactorings that rely
primarily on name binding preservation in Photran, since

Refactoring E
cl

ip
se

J
D

T
(R

a
n
k
)

In
te

ll
iJ

ID
E
A

1

In
te

ll
iJ

R
e
S
h
ar

p
e
r2

M
S

V
is
u
a
l
S
tu

d
io

3

E
cl

ip
se

C
D

T

V
is
u
a
l
A

ss
is
t

X
4

A
p
p
le

X
co

d
e
5

Z
e
n
d

S
tu

d
io

6

Rename 1 • • • • • • •
Extract Variable 2 • • ◦ • ◦ ◦ •
Move 3 • • ◦ ◦ ◦ ◦ •
Extract Method 4 • • • • • • •
Change Signature 5 • • • ◦ • ◦ ◦
Pull Up Method 11 • • ◦ ◦ • • ◦

Legend: • Included ◦ Not Included

1 http://www.jetbrains.com/idea/features/refactoring.html
2 http://www.jetbrains.com/resharper/features/code refactoring.html
3 http://msdn.microsoft.com/en-us/library/719exd8s.aspx
4 http://www.wholetomato.com/products/featureRefactoring.asp
5 http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/

XcodeWorkspace/150-Refactoring/refactoring.html
6 http://www.zend.com/en/products/studio/features#refactor

Table 1: Automated refactorings in popular tools.

Fortran has the most complicated name binding rules. We
implemented flow-based refactorings for BC: It contains
functions, scalar and array variables, and all of the usual
control flow constructs, but it is a much smaller and
simpler language than either Fortran or PHP. This simplified
the transformations in these (usually complex) refactorings
without sacrificing any of the essential preconditions. We
implemented object-oriented refactorings for PHP 5.

We chose to implement 18 refactorings across three very
different languages to demonstrate the generality of our
technique. A technique that works for 18 refactorings will
certainly apply to many others as well. That said, many
popular IDEs provide fewer than 10 refactorings, including
Apple Xcode (8 refactorings), Microsoft Visual Studio (6),
and Zend Studio (4). So while generality is important and
desirable, expediting and improving the implementation of a
few common refactorings is equally important, perhaps even
more so.

6.3 Q2: Productivity
For each of the 18 refactorings, we chose a target language

that would provide a challenging yet representative set
of preconditions. This brings us to our second research
question: Does using a differential engine reduce the number
of preconditions that must be explicitly checked? To answer
this question, we needed to be able to compare traditional
and differential forms of the same refactorings. We also
needed to be able to quantify the “amount of precondition
checking” required for each refactoring.

Before implementing our refactorings, we wrote detailed
specifications, which we have published as a technical
report [9]. Each specification describes both the traditional
and the differential version of the refactoring, both at a
level of detail sufficient to serve as a basis for implemen-
tation. (Several undergraduate interns working on Photran
implemented refactorings based on our specifications.) The
style of the specifications is similar to the Pull Up Method
example from §5, except more precise. For example, the
Fortran refactoring specifications use the same terminology
as the Fortran 95 ISO standard.

We wrote these specifications with the specific intent to
provide a “fair” comparison between the traditional and
differential versions of the refactorings.3 We broke down
the preconditions for each refactoring into steps, mimicking
an imperative implementation, and factored out duplication
among refactorings. Assumptions about analysis capabil-
ities were modest—roughly equivalent to a compiler front
end coupled with a cross-reference database.

A summary of the refactoring specifications is shown
in Table 2. Following the name of the refactoring, the
next several columns enumerate all of the preconditions in
our specifications and indicate which ones were eliminated
by the use of the differential engine. The next two
columns attempt to quantify the “amount of precondition
checking” involved in each refactoring. A precondition
such as “introducing X will preserve name bindings” is far
more complicated than a precondition like “X is a valid
identifier,” so we chose to look at the number of steps
devoted to precondition checking in the specification of each
refactoring. We attempted to make the granularity of each
step consistent, so the total number of steps should be a
relatively fair measure of the complexity of precondition
checking. The Trad. column gives the total number of
steps in all of the refactoring’s precondition checks in the
traditional version; the Diff. column gives the number of
steps in the differential version. These two numbers are also
shown as bar graph in Figure 4. For comparison, the last
column in the table (Xform) gives the number of steps in
the transformation; this is not shown in the bar graph.

The data in Table 2 and Figure 4 support our hypothesis
that using a differential refactoring engine reduces the
amount of explicit precondition checking that must be
performed. Notably:

1. The number of precondition checking steps decreased
for most refactorings, often substantially. When no
precondition checks were eliminated, it was generally
because the preconditions were not related to compil-
ability or preservation.

2. The precondition checks that were eliminated tended
to be complex, including a 25-step name binding
preservation analysis for Fortran.

3. The number of precondition checking steps never in-
creased. In fact, using a differential refactoring engine
cannot increase the number of preconditions that must
be checked. A differential engine provides a “free”
check for compilability and preservation preconditions.
In the worst case, a refactoring has none of these—in
which case, it requires as many precondition checks
as it would in a traditional refactoring engine. So,
the number of precondition checking steps can only
decrease (or stay the same).

6.4 Robustness
Eliminating complex preconditions can improve robust-

ness indirectly by making refactorings simpler to specify
and implement. But in fact, a differential refactoring
engine guarantees a certain level of robustness by design.
Checking preservation preconditions a posteriori ensures
3
We originally considered comparing the actual implementations

(e.g., by measuring lines of code), but it is well known that such
numbers could easily be skewed by details of the implementation
not directly attributable to the use of the differential engine, making
conclusive results more difficult for the reader to verify.

Preconditions Steps

Refactoring IN S
I

P
P

R
N

II O
th

er

W
ar

n

T
ra

d
.

D
iff

.

X
fo

rm

F
o
rt

ra
n

1. Rename • - - - - - ◦ 29 1 4

2. Move - - • • - ◦ - 23 3 58

3. Introduce Use • - - - - • - 29 0 5

4. Change Function Signature - - - - - ◦ - 4 4 13

5. Introduce Implicit None - - - - - - - 0 0 6

6. Add Empty Subprogram • - - - - - - 27 0 2

7. Safe Delete - • - - - - - 4 0 5

B
C

8. Extract Local Variable - - - - - • - 3 0 4

9. Add Local Variable • - - - - - - 20 0 4

10. Introduce Block - - - - - - - 0 0 1

11. Insert Assignment - - - - - • - 1 0 1

12. Move Expression Into Assignment - - - - - • - 2 2 2

13. Extract Function - - - - - ◦ - 1 1 4

14. Add Empty Function - - - - - • - 1 0 1

15. Populate Unreferenced Function - - - - - • - 2 0 17

16. Replace Expression - - - - - - - 0 0 13

PHP 17. Pull Up Method - - - - - - - 0 0 2

18. Copy Up Method - - - - • • ◦ 12 1 3

Legend: • Eliminated ◦ Not eliminated - Not applicable

Table 2: Summary of traditional and differential specifications of 18 refactorings. The precondition acronyms and step
counts are described in the written specifications [9].

Figure 4: Precondition step counts from Table 2.

that preservation was actually achieved; in the presence
of a buggy or incomplete transformation, it analyzes what
the transformation actually did, not what it was supposed
to do. Checking for compilability a posteriori provides a
sanity check: If the code does not compile after refactoring,
something must be wrong, and the user should be notified.

The research literature provides particularly compelling
evidence that a posteriori compilability and preservation
checking can improve robustness: These checks, which are
done automatically in a differential refactoring engine, sub-
sume some highly nontrivial preconditions—preconditions
that developers have “missed” in traditional refactoring
implementations. Verbaere et al. [12] identify a bug in
several tools’ Extract Method refactorings in which the
extracted method may return the value of a variable which
has not been assigned—a problem which will be identified
by a compilability precondition. Schäfer et al. [11] describe
a bug in Eclipse JDT’s Rename refactoring which amounts

to a failure to preserve name bindings. Daniel et al. [1]
reported 21 bugs on Eclipse JDT and 24 on NetBeans (many
were identical). Of the 21 Eclipse bugs, 19 would have been
caught by a compilability check. Seven of these identified
missing preconditions;4 the others were actually errors in
the transformation that manifested as compilation errors.

7. LIMITATIONS
Our preservation analysis has two notable limitations.
First, it assumes that, if a replacement subtree interfaces

with the rest of the AST in an expected way, it is a valid
substitute for the original subtree. It is the refactoring
developer’s responsibility to ensure that this assumption
is appropriate. For example, if one were to replace every
instance of the constant 0 with the constant 1, this would
almost certainly break a program, but our analysis would

4
Bugs 177636, 194996, 194997, 195002, 195004, 194005, and 195006

not detect any problem, since this change would not affect
any edges in a typical program graph. However, the
refactoring developer should recognize that name bindings,
control flow, and du-chains do not model the conditions
under which 1 and 0 are interchangeable values.

Second, for our preservation analysis to be effective, the
“behavior” to preserve must be modeled by the program
graph. There are several cases where this is unlikely to be
true, including the following.

Interprocedural data flow. One particularly insidious
example is illustrated by an Eclipse bug (186253) reported
by Daniel et al. [1]. In this bug, Encapsulate Field
reorders the fields in a class declaration, causing one field
to be initialized incorrectly by accessing the value of an
uninitialized field via an accessor method. In theory,
this could be detected by a preservation analysis, as it is
essentially a failure to preserve du-chains for fields among
their initializers. Unfortunately, these would probably not
be modeled in a program graph, since doing so would require
an expensive interprocedural analysis.

Constraint-based refactorings, such as Infer Generics [5].
These refactorings preserve invariants modeled by a system
of constraints; a program graph is an unsuitable model.

Library replacements, such as replacing primitive int

values with AtomicInteger objects in Java [2], or converting
programs to use ArrayList instead of Vector. Program
graphs generally model language semantics, not library
semantics, and therefore are incapable of expressing the
invariants that these refactorings maintain.

8. RELATED & FUTURE WORK
The idea of using a posteriori checks in a refactoring tool

is new, although it has been hinted at by previous work.
In the context of dependence-based transformations, for
example, a fusion preventing dependence [4, p. 258] is defined
in a way such that it is most easily detected a posteriori.
Roberts [10] first suggested the use of postconditions in
refactoring, although his objective was to use them in
tandem with a priori precondition checks to reduce the
cost of implementing composite refactorings: A precondition
does not need to be checked if a previous refactoring can
guarantee that it has already been satisfied.

Classifying preconditions as guaranteeing input validity,
compilability, and preservation is also new.

The idea that behavior-preserving program transforma-
tions maintain invariants is not new, although there is
open debate on how, exactly, to express and check these
invariants. The notation and technique proposed in §5 is
new. Mens et al. [6] used graph rewriting rules. Verbaere et
al. [12] used a variant of Datalog. Roberts [10] expressed
pre- and postconditions using first-order predicate logic.
Griswold [3] proved (by hand) that each transformation’s
effects on a program dependence graph (PDG) could be
described as a composition of meaning-preserving PDG
transformations. Schäfer et al. [11] implemented a Rename
refactoring for Java by“inverting”name lookup rules, adding
qualifiers to names as necessary to guarantee that the name
bindings would resolve identically after the transformation
was complete—i.e., the name binding invariant was main-
tained by construction.

Much future work is possible. Many alternatives to
our program graph-based semantic model and preservation
analysis are possible. In Smalltalk, for example, name

binding preservation could be checked using the bytecode
representation as a semantic model. Of course, much
work remains to be done within the program graph-based
framework outlined in §5 as well. The present authors
are working on a detailed account of our implementation,
including performance measurements. Other refactorings
should be investigated: For example, are the preservation
specifications in §§5.4–5.5 sufficient to describe dependence-
based loop transformations? Can a program graph repre-
sentation be extended to overcome the limitations outlined
in the previous section? Can it model C preprocessor
directives? Is it useful to extend a differential refactoring
engine with expensive interprocedural analyses for the pur-
poses of testing but to replace these analyses with cheaper,
traditional precondition checks in production? Rather than
failing when a preservation rule is not met, is it possible to
add “repair” strategies to the refactoring engine, similar to
the way the JastAddJ rename engine [11] added qualifiers
to names? We hope that these, and other questions about
differential refactoring, will be investigated in the future.

Portions of this work were supported by the United States De-

partment of Energy under Contract No. DE-FG02-06ER25752.

The authors would like to thank Rob Bocchino, John Brant, Brett

Daniel, Matthew Fotzler, Ashley Kasza, and Abhishek Sharma.

9. REFERENCES
[1] B. Daniel, D. Dig, K. Garcia, and D. Marinov.

Automated testing of refactoring engines. In FSE ’07,
pages 185–194, 2007.

[2] D. Dig, J. Marrero, and M. D. Ernst. Refactoring
sequential Java code for concurrency via concurrent
libraries. In ICSE ’09, pages 397–407, 2009.

[3] W. G. Griswold. Program Restructuring as an Aid to
Software Maintenance. PhD thesis, Washington, 1991.

[4] K. Kennedy and J. R. Allen. Optimizing compilers for
modern architectures: a dependence-based approach.
Morgan Kaufmann, San Francisco, 2002.

[5] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer.
Refactoring for parameterizing Java classes. In ICSE
’07, pages 437–446, 2007.

[6] T. Mens, N. Van Eetvelde, S. Demeyer, and
D. Janssens. Formalizing refactorings with graph
transformations. J. Softw. Maint. Evol.,
17(4):247–276, 2005.

[7] G. C. Murphy, M. Kersten, and L. Findlater. How are
Java software developers using the Eclipse IDE? IEEE
Softw., 23(4):76–83, 2006.

[8] E. Murphy-Hill, C. Parnin, and A. P. Black. How we
refactor, and how we know it. In ICSE ’09, pages
287–297, 2009.

[9] J. L. Overbey, M. J. Fotzler, A. J. Kasza, and R. E.
Johnson. A collection of refactoring specifications for
Fortran 95, BC, and PHP 5. Technical Report
http://jeff.over.bz/papers/2010/tr-refacs.pdf, 2010.

[10] D. B. Roberts. Practical Analysis for Refactoring.
PhD thesis, UIUC, 1999.

[11] M. Schäfer, T. Ekman, and O. de Moor. Sound and
extensible renaming for Java. In OOPSLA ’08, pages
277–294, 2008.

[12] M. Verbaere, A. Payement, and O. de Moor. Scripting
refactorings with JunGL. In OOPSLA ’06 Companion,
pages 651–652, 2006.

