
Differential Precondition Checking:

A Lightweight, Reusable Analysis

for Refactoring Tools

Jeffrey L. Overbey and Ralph E. Johnson

Department of Computer Science

University of Illinois at Urbana-Champaign

{overbey2,johnson}@cs.illinois.edu

Abstract—One of the most difficult parts of building automated
refactorings is ensuring that they preserve behavior. This paper
proposes a new technique to check for behavior preservation;
we call this technique differential precondition checking. It is
simple yet expressive enough to implement the most common
refactorings, and the core algorithm runs in linear time. However,
the main advantage is that a differential precondition checker
can be placed in a library and reused in refactoring tools for
many different languages; the core algorithm can be implemented
in a way that is completely language independent. We have
implemented a differential precondition checker and used it in
refactoring tools for Fortran (Photran), PHP, and BC.

Keywords-program representation; refactoring

I. INTRODUCTION

What makes writing a new refactoring tool hard? What

are the parts of such a tool? One part is the user interface;

refactoring is interactive and requires a good UI. But IDEs

like Eclipse provide a good framework for building a UI for a

refactoring tool, and most of the UI for a new refactoring tool

can be reused from other tools. Another part is the parser and

the general language infrastructure. People have tried to reuse

the infrastructure from compilers and other tools with mixed

results, but our previous work [1] shows that it is possible to

generate an infrastructure that is perfectly suited for refactor-

ing, so this is a solved research problem, too. The remaining

parts are the refactorings themselves. Automated refactorings

have two parts: the transformation—the change made to the

user’s source code—and a set of preconditions which ensure

that the transformation will produce a program that compiles

and executes with the same behavior as the original program.

Authors of refactoring tools agree that precondition checking

is much harder than writing the program transformations.

This paper shows how to construct a reusable, generic

precondition checker which can be placed in a library and

reused in refactoring tools for many different languages. This

makes it easier to implement a refactoring tool for a new

language.

We call our technique for checking preconditions differential

precondition checking. A differential precondition checker

builds a semantic model of the program prior to transforma-

tion, simulates the transformation, performs semantic checks

on the modified program, computes a semantic model of the

modified program, and then looks for differences between the

two semantic models. The refactoring indicates what differ-

ences are expected; if the actual differences in the semantic

models are all expected, then the transformation is considered

to be behavior preserving. The changes are applied to the

user’s code only after the differential precondition checker has

determined that the transformation is behavior preserving.

This technique is simple, practical, and minimalistic. It

does not guarantee soundness, and it is not a general method

for testing program equivalence. Rather, it is designed to be

straightforward, fast, scalable, and just expressive enough to

implement preconditions for the most common refactorings.

Most importantly, the core algorithm can be implemented in

a way that is completely language independent, so it can be

optimized, placed in a library, and reused in refactoring tools

for many different languages.

This paper makes five contributions. (Relevant section num-

bers are noted parenthetically.)

1) It characterizes preconditions as guaranteeing input va-

lidity, compilability, and preservation (§III).

2) It introduces the concept of differential precondition

checking (§III) and shows how it can simplify pre-

condition checking by eliminating compilability and

preservation preconditions (§V).

3) It observes that semantic relationships between the mod-

ified and unmodified parts of the program tend to be the

most important and, based on this observation, proposes

a very concise method for refactorings to specify their

preservation requirements (§V).

4) It describes how the main component of a differential

precondition checker (called a preservation analysis) can

be implemented in a way that is both fast and language

independent (§VII).

5) It provides an evaluation of the technique (§VIII), con-

sidering its successful application to 18 refactorings

and its implementation in refactoring tools for Fortran

(Photran), PHP, and BC.

II. PRECONDITION CHECKING

In most tools, each refactoring has its own set of precondi-

tions. These are tested first, and the transformation proceeds

only if they pass. Unfortunately, designing a sufficient set

of preconditions for a new refactoring is extremely difficult.

The author of the refactoring must exhaustively consider every

feature in the target language and somehow guarantee that the

transformation is incapable of producing an error. Consider

Java: Even a “simple” refactoring like Rename must consider

naming conflicts, namespaces, qualifiers, shadowing, reserved

words, inheritance, overriding, overloading, constructors, vis-

ibility, inner classes, reflection, externally-visible names, and

“special” names such as main.

One promising alternative to traditional precondition check-

ing is to analyze the program after it has been transformed,

comparing it to the original program to determine whether or

not the transformation preserved behavior. This has been used

for some dependence-based compiler transformations (e.g.,

a fusion preventing dependence [2, p. 258] is most easily

detected after transformation), but researchers have applied

it to refactoring tools only recently. Although this technique

is not yet used in any commercial tools, research indicates

that it tends to make automated refactorings simpler and more

robust [3].

So, how can a refactoring tool analyze a program after

transformation? Refactorings preserve certain relationships in

the source program. The Rename refactoring preserves a name

binding relationship: It ensures that every identifier refers to

the “same” declaration before and after transformation. Extract

Method and Extract Local Variable preserve control flow and

def-use chains at the extraction site. As we will see later

in this paper, Pull Up Method preserves a name binding

relationship, as well as a relationship between classes and

methods they override. In our experience, the most common

refactorings preserve invariant relationships related to name

bindings, inheritance, overriding, control flow, and def-use

chains. Analyzing a program after transformation means en-

suring that these invariant relationships are preserved across

the transformation.

Schäfer et al. have suggested one way to refactor using

invariants like these. To implement a Rename refactoring

for Java, they stored the original name bindings, changed

names, then checked the resulting bindings, adding qualifiers

as necessary to guarantee that the name bindings would resolve

identically after the transformation was complete [4]. They

used a similar approach to implement Extract Method: They

stored the original control flow, performed the transformation,

then added control flow constructs as necessary to restore

the original flow [5]. They have applied this approach to

many other refactorings as well [3, 6]. In short, their approach

maintains invariants by construction—i.e., while performing

the transformation, the refactoring checks the invariant and, if

possible, adjusts its behavior to preserve it.

The approach taken in this paper is based on some of the

same ideas as that of Schäfer et al., but there is a substantial

difference in how we perform the preservation check. The

main difference is that our technique, when implemented

appropriately, is language independent; the mechanism for

specifying preservation requirements and the algorithm for

performing the preservation analysis are the same, regardless

of what refactoring is being checked and regardless of what

language is being refactored. This means that, unlike the

approach of Schäfer et al., our preservation analysis can be

implemented in a library and reused verbatim in refactoring

tools for many different languages.

III. DIFFERENTIAL PRECONDITION CHECKING

Preconditions determine the conditions under which the

program transformation will preserve behavior. Logically, this

means that they guarantee three properties:

1) Input validity. All input from the user is legal; it is pos-

sible to apply the transformation to the given program

with the given inputs.

2) Compilability. If the transformation is performed, the

resulting program will compile; it will meet all the syn-

tactic and semantic requirements of the target language.

3) Preservation. If the transformation is performed and

the resulting program is compiled and executed, it will

exhibit the same runtime behavior as the untransformed

program.

Clearly, input validation needs to be performed before the

program is transformed, since it may not even be possible to

perform a transformation if the user provides invalid input.

But compilability is actually easier to determine after trans-

formation; essentially, it means running the program through

a compiler front end. It turns out that preservation can often

be checked a posteriori as well.

When differential precondition checking is employed, refac-

torings proceed as follows:

1) Analyze source code and produce a program represen-

tation.

2) Construct a semantic model, called the initial model.

3) Validate user input.

4) Simulate modifying source code, and construct a new

program representation. Detect compilability errors, and

if appropriate, abandon the refactoring.

5) Construct a semantic model from this new program

representation. This is the derivative model.

6) Perform a preservation analysis by comparing the

derivative model with the initial model.

7) If the preservation analysis succeeds, modify the user’s

source code. Otherwise, abandon the refactoring.

What distinguishes differential precondition checking is

how it ensures compilability and preservation. These topics

will be discussed in detail in Sections IV and V, respectively.

It ensures compilability by performing essentially the same

checks that a compiler front end would perform. It ensures

behavior preservation by building semantic models of the

program before and after it is transformed. The refactoring

informs the differential precondition checker of what kinds

of semantic differences are expected; the checker ensures that

the actual differences in the semantic models are all expected

differences—hence the name differential precondition check-

ing.1

Note that a differential precondition checker contrasts the

program’s semantic model after transformation with its seman-

tic model before transformation. This is different from program

metamorphosis systems [7], which provide an “expected”

semantic model and then determine whether the transformed

program’s semantic model is equivalent to the expected model.

As we will see in §§V-D–V-F, the mechanism for specifying

expected differences in a differential precondition checker

is fairly coarse-grained; it does not uniquely characterize

the semantics of a particular transformed program but rather

identifies, in general, how a refactoring is expected to affect

programs’ semantics.

IV. CHECKING COMPILABILITY

Checking for compilability means ensuring that the refac-

tored program does not contain any syntactic or semantic

errors, i.e., that it is a legal program in the target language.

These errors would usually be detected by the compiler’s

front end. Typically, these check constraints like “no two local

variables in the same scope shall have the same name” and “a

class shall not inherit from itself.”

When differential precondition checking is employed, these

checks are performed in Step 4 (above), and they are used

in lieu of traditional precondition checks. For example, a

refactoring renaming a local variable A to B would not

explicitly test for a conflicting local variable named B; instead,

it would simply change the declaration of A to B, and, if this

resulted in a conflict, it would be detected by the compilability

check.

In fact, most refactoring tools already contain most of

the infrastructure needed to check for compilability. It is

virtually impossible to perform any complicated refactorings

without a parser, abstract syntax tree (AST), and name binding

information (symbol tables). A type checker is usually needed

to resolve name bindings for members of record types, as well

as for refactorings like Extract Local Variable. So, refactoring

tools generally contain (most of) a compiler front end. Steps 1

and 4 (above) involve running source code through this front

end. So checking for compilability in Step 4 is natural.

The literature contains fairly compelling evidence for in-

cluding a compilability check in a refactoring tool. Compilabil-

ity checking subsumes some highly nontrivial preconditions—

preconditions that developers have “missed” in traditional

refactoring implementations. Verbaere et al. [8] identify a bug

in several tools’ Extract Method refactorings in which the

extracted method may return the value of a variable which

has not been assigned—a problem which will be identified

by a compilability check. Schäfer et al. [4] describe a bug

in Eclipse JDT’s Rename refactoring which amounts to a

failure to preserve name bindings. Daniel et al. [9] reported 21

1Why differential “precondition” checking? A refactoring takes user input
I and uses it to determine a program transformation T (I). However, a
precondition for the application of T (I) to the user’s source code is that
it satisfies the properties of compilability and preservation.

bugs on Eclipse JDT and 24 on NetBeans. Of the 21 Eclipse

bugs, 19 would have been caught by a compilability check.

Seven of these identified missing preconditions;2 the others

were actually errors in the transformation that manifested as

compilation errors.

Compilability checking also serves as a sanity check. In the

presence of a buggy or incomplete transformation, it analyzes

what the transformation actually did, not what it was supposed

to do. If the code will not compile after refactoring, the

transformation almost certainly did something wrong, and the

user should be notified.

V. CHECKING PRESERVATION

Compilability checking is important but simple. Checking

for preservation is more challenging. It involves choosing an

appropriate semantic model and finding a preservation analysis

algorithm that balances speed, correctness, and generality. In

this section, we will use a program graph as the semantic

model. In Section VII, we will use a slightly different semantic

model based on the same ideas.

In the remainder of this section, we will discuss what

program graphs are (§V-A) and how they can be used as an

analysis representation for a refactoring tool (§V-B). Then,

we will discuss what preservation means in the context of

a program graph (§V-C) and how it can be used instead of

traditional precondition checks, using Safe Delete and Pull

Up Method as examples (§§V-D–V-F). The discussion here is

conceptual in nature; a more detailed, formal treatment will

appear in the first author’s dissertation [10].

A. Program Graphs

One program representation which has enjoyed success in

the refactoring literature [8, 11] is called a program graph. A

program graph “may be viewed, in broad lines, as an abstract

syntax tree augmented by extra edges” [11, p. 253]. These

“extra edges”—which we will call semantic edges—represent

semantic information, such as name bindings, control flow,

inheritance relationships, and so forth. Alternatively, one might

think of a program graph as an AST with the graph struc-

tures of a control flow graph, du-chains, etc. superimposed;

the nodes of the AST serve as nodes of the various graph

structures.

An example of a Java program and a plausible program

graph representation are shown in Figure 1. The underlying

abstract syntax tree is shown in outline form; the dotted lines

are the extra edges that make the AST a program graph. We

have shown three types of edges. Name binding edges link

the use of an identifier to its corresponding declaration. Within

the method body, control flow edges form the (intraprocedural)

control flow graph; the method declaration node is used as the

entry block and null as the exit block. Similarly, there are two

du-chains, given by def-use edges.

Program graphs are appealing because they summarize the

“interesting” aspects of both the syntax and semantics of

2Bugs 177636, 194996, 194997, 195002, 195004, 194005, and 195006

Class

 name: "Test2"

 body:

 (1) Field

 type: int

 name: "field"

 initialValue:

 IntConstant

 value: 0

 (2) Method

 returnType: void

 name: "fun"

 arguments: (none)

 body:

 (i) LocalVariable

 type: int

 name: "i"

 initialValue:

 IntConstant

 value: 0

 (ii) PostIncrement

 variable: "i"

 (iii) PostIncrement

 variable: "field"

 (iv) MethodInvocation

 name: "System.out.println"

 arguments:

 VariableAccess

 variable: "i"

b
in
d
in
g

b
in
d
in
g

b
in
d
in
g

c
o
n
tr
o
l
fl
o
w

c
o
n
tr
o
l
fl
o
w

c
o
n
tr
o
l
fl
o
w

c
o
n
tr
o
l
fl
o
w

d
e
f-
u
s
e
 (
1
)

d
e
f-
u
s
e
 (
2
)

class Test2 {

 int field = 0;

 void fun() {

 int i = 0;

 i++;

 field++;

 System.out.println(i);

 }

}

Fig. 1. Example Java program and corresponding program graph

a program in a single representation, obviating the need to

maintain a mapping between several distinct representations.

Moreover, they are defined abstractly: the definition of a

program graph does not state what types of semantic edges

are included. A person designing a program graph is free to

include (or exclude) virtually any type of edge imaginable,

depending on the language being refactored and needs of the

refactorings that will be implemented. For the 18 refactorings

we considered (see §VIII), we found five types of edges to

be useful: name binding, control flow, def-use, override edges

(which link an overriding method to the overridden imple-

mentation in a superclass), and inheritance edges (which link

a class to the concrete methods it inherits from a superclass).

B. Program Graphs and AST Manipulation

In the end, refactoring tools manipulate source code. How-

ever, when building a refactoring, it is helpful to think of

manipulating the AST instead. Adding a node means inserting

source code. Replacing a node means replacing part of the

source code. And so on.

This does not change when a program graph is used in a

refactoring tool. A program graph is always derived from an

AST. The content of the AST determines what semantic edges

will be superimposed. Semantic edges cannot be manipulated

directly; they can only change as a side effect of modifying

the AST.

In fact, that observation will serve as the basis of our

preservation analysis. When we modify an AST, we will

indicate which semantic edges we expect to be preserved

and which ones we expect to change. Then, after the source

code has been modified, we will determine what semantic

edges were actually preserved and compare this with our

expectations.

C. Preservation in Program Graphs

This raises a question: What does it mean for a semantic

edge to be “preserved” when an AST is modified?

We would like to say: If both the modified and unmodified

ASTs contain an edge with the same type and the same

endpoints, that edge has been preserved. Unfortunately, it is

not clear what the “same” endpoints are, since the AST has

been modified, and the endpoints are AST nodes.

Consider a refactoring which replaces the expression x− x

with the constant 0. When applied to the expression 3+(x−x),
this corresponds to the following tree transformation.

+

−3

xx

+

03

When a subtree is changed (i.e., added, moved, removed,

or replaced) in an AST, we will call that the affected subtree.

A gray triangle surrounds the affected subtrees in the figure

above. Using that figure as an example, consider how AST

nodes in the unmodified AST correspond with nodes in the

modified AST:

• There is an obvious correspondence between AST nodes

outside the affected subtrees, since those parts of the AST

were unaffected by the transformation.

• As a whole, the affected subtree before the transformation

corresponds to the affected subtree after the transforma-

tion.

• In general, there is no correspondence between nodes

inside the affected subtrees.

Recall that our goal is to determine if a semantic edge has

the “same” endpoints before and after an AST transformation.

This is easy if an endpoint is outside the affected subtree,

or if that endpoint is the affected subtree itself. But if the

endpoint is inside the affected subtree, we cannot determine

exactly which node it should correspond to. . . except that, if

it corresponds to anything, that node would be in the other

affected subtree.

Since we cannot determine a correspondence between AST

nodes inside the affected subtree, we will collapse the affected

subtrees into single nodes. This makes the AST before trans-

formation isomorphic to the AST after transformation.

collapsedcollapsed

+

3

+

3

Now, suppose we have superimposed semantic edges to

form a program graph. When we collapse the affected subtree

to a single node, we will also need to adjust the endpoints of

the semantic edges accordingly:

• When an affected subtree is collapsed to a single node, if

any semantic edges have an endpoint inside the affected

subtree, that endpoint will instead point to the collapsed

node.

Note, in particular, that if an edge has both endpoints inside the

affected subtree, it will become a self-loop on the collapsed

node. Also, note that a program graph is not a multigraph:

If several edges have the same types and endpoints in the

collapsed graph, they will be merged into a single edge.

Collapsing the affected subtree in a program graph actually

has a fairly intuitive interpretation: If we replace one subtree

with a different subtree that supposedly does the same thing,

then the new subtree should interface with its surroundings in

(mostly) the same way that the old subtree did. That is, all of

the edges that extended into the old subtree should also extend

into the new subtree, and all of the edges that emanated from

the old subtree should also emanate from the new subtree.

There may be some differences within the affected subtree,

but the “interface” with the rest of the AST stays the same.

In some cases, we will find it helpful to replace one subtree

with several subtrees (or, conversely, to replace several sub-

trees with one). For example, Encapsulate Variable removes

a public variable, replacing it with a private variable, an

accessor method, and a mutator method. In other words, we are

modifying several subtrees at the same time. In these cases, we

have an affected forest rather than a single affected subtree.

However, the preservation rule is essentially the same: All

of subtrees in the affected forest are collapsed into a single

unit. So if an edge extended into some part of the affected

forest before transformation, it should also extend into some

part of the affected forest after transformation. In the case of

Encapsulate Variable, this correctly models the idea that every

name binding that pointed to the original (public) variable

should, instead, point to either the new (private) variable, the

accessor method, or the mutator method. (We will see an

example of an affected forest when we discuss Pull Up Method

in §V-F.)

D. Specifying Preservation Requirements

Now that we have established how to determine whether

a semantic edge has been preserved across a transformation,

we turn to a different question: How can we express which

semantic edges we expect to be preserved and which ones we

expect to change?

1) Edge Classifications: From the above description, we

can see that whether we want to preserve an edge depends

on its type as well as its relationship to the affected subtree.

Therefore, it is helpful to classify every semantic edge as either

internal (both endpoints of the semantic edge occur within the

affected subtree), external (neither endpoint occurs within the

affected subtree), incoming (the head of the semantic edge

is outside the affected subtree but the tail is inside it), or

outgoing (the head is inside the affected subtree and the tail

is outside it).

2) Notation: Now, we can establish some notation. To

indicate what edges we (do not) expect to preserve, we must

indicate three things:

1) The type(s) of edges to preserve. We will use the letters

N , C, D, O, and I to denote name binding, control flow,

def-use, override, and inheritance edges, respectively.

(Note, however, that program graphs may contain other

types of edges as well, depending on the language being

refactored and the requirements of the refactorings being

implemented.)

2) The classification(s) of edges to preserve. We will use

←, →, 	, and × to indicate incoming, outgoing, inter-

nal, and external edges, respectively. We will use ↔ as

a shorthand for describing both incoming and outgoing

edges.

3) Whether we expect the transformation to introduce ad-

ditional edges or remove existing edges. If additional

edges may be introduced, we denote this using the

symbol ⊇ (i.e., the transformed program will contain a

superset of the original edges). If existing edges may be

eliminated, we denote this by ⊆. If edges may be both

added and removed, then we cannot effectively test for

preservation, so those edges will be ignored; we indicate

this using the symbol =? . Otherwise, we expect a 1–

1 correspondence between edges, i.e., edges should be

preserved exactly. We indicate this by =.

E. Example: Safe Delete (Fortran 95)

To make these ideas more concrete, let us first consider a

Safe Delete refactoring for Fortran which deletes an unrefer-

enced internal subprogram.3

The traditional version of this refactoring has only one

precondition: There must be no references to the subprogram

except for recursive references in its definition.

What would the differential version look like? To determine

its preservation requirements, it is often useful to fill out a table

like the following (note that Fortran 95 is not object oriented

and thus cannot have O- or I-edges):

N C D

← = = =
→ ⊆ = =
	 ⊆ ⊆ ⊆
× = = =

When a subprogram is deleted, all of the semantic edges

inside the deleted subroutine will, of course, disappear, and if

the subprogram references any names defined elsewhere (e.g.,

other subprograms), those edges will disappear. Otherwise, no

semantic edges should change.

Notating preservation requirements in tabular form is some-

what space-consuming, since in practice most cells contain =.

Therefore, we will use a more compact notation. For each edge

type, we will use subscripts to indicate which cells are not =,

3A slightly more complete and much more detailed specification for this refactoring

is given in the technical report [12] described in the Evaluation section of this paper.

i.e., what edges should not be preserved exactly. If all cells

are =, we will omit the subscript. Using this notation, the

preservation requirements in the above table would be notated

N→⊆
	
⊆C

	
⊆D

	
⊆.

Thus, we can describe the differential version of this

refactoring in a single step: Delete the subprogram definition,

ensuring preservation according to the rule N→⊆
	
⊆C

	
⊆D

	
⊆.

F. Example: Pull Up Method (PHP 5)

For a more interesting example, let us consider a Pull Up

Method refactoring for PHP 5, which moves a concrete method

definition from a class C into its immediate superclass C ′.4

First, consider the traditional version.

Preconditions.

1) A method with the same name as M must not already

exist in C ′. If M were pulled up, there would be two

methods with the same name, or M would need to

replace the existing method.

2) If there are any references to M (excluding recursive

references inside M itself), then M must not have

private visibility. If it were moved up, its visibility would

need to be increased in order for these references to be

preserved.

3) M must not contain any references to the built-in

constants self or __CLASS__. If it were moved up,

these would refer to C ′ instead of C. (Note that PHP

contains both self and $this: The former refers to

the enclosing class, while the latter refers to the this

object.)

4) M must not contain any references to private members

of C (except for M itself, if it is private). Private

members of C would no longer be accessible to M if it

were pulled up.

5) M must not contain any references to members of C for

which there is a similarly-named private member of C ′.

These references would refer to the private members of

C ′ if the method were pulled up.

6) If M overrides another concrete method, no subclasses

of C ′ may inherit the overridden method. Pulling up

M would cause these classes to inherit the pulled up

method instead.

7) The user should be warned if M overrides another

concrete method. If M were pulled up into C ′, then M

would replace the method that C ′ inherited, changing the

behavior of that method in objects of type C ′, although

the user might intend this since he explicitly chose to

pull up M into C ′.

Transformation. Move M from C to C ′, replacing all occur-

rences of parent in M with self.

Now, consider the differential version. The transformation

can be expressed as the composition of two smaller refactor-

ings:

4Again, a more complete and detailed specification is available [12].

1) Copy Up Method. Using preservation rule NO←⊇
	
⊇I
×
⊆,

copy the method definition from C to C ′, replacing all

occurrences of parent in M with self.

2) Delete Overriding Duplicate. Remove the original

method definition from C, with rule NO
	
⊆I←⊇.

Pictorially, the process is as follows. The affected forests are

highlighted in gray.

program

C' C

M

program

C' C

MM

overrides

program

C' C

M

Copy Up Del Dup

in
h
e
ri
ts

When the method is copied from C to C ′, an internal override

edge will be introduced, as may incoming override edges (if

another class will override the pulled up method), hence the

rule O←⊇
	
⊇. If the method being pulled up overrides a method

inherited from the immediate superclass, then an inheritance

edge will be lost, hence I
×
⊆. However, the new method in C ′

should not be inherited by any subclasses, and all identifiers

should bind to the same names they did when the method

was contained in C, so no other inheritance or name binding

edges are expected to change. Once we have established that

no subclasses will accidentally inherit the pulled up method,

we can delete the original method from C. This will remove

the override edge introduced in the previous step, and C

will inherit the pulled up method, so the preservation rule is

NO
	
⊆I←⊇.

Now, consider how the differential version of this refac-

toring satisfies all of the traditional version’s preconditions.

Precondition 1 would be caught by a compilability check.

Preconditions 2–5 are simply preserving name bindings. A

program that failed Precondition 6 would introduce an incom-

ing inheritance edge. If a program failed Precondition 7, an

outgoing inheritance edge from C ′ would vanish.

For the differential version, we redefined Pull Up Method

as the composition of two smaller refactorings. Whenever this

is possible, it is generally a good idea: It allows preserva-

tion rules to be specified at a finer granularity; the smaller

refactorings are often useful in their own right; and, perhaps

most importantly, simpler refactorings are easier to implement,

easier to test, and therefore more likely to be correct.

VI. THE PRESERVATION ANALYSIS ALGORITHM

If one understands what a program graph is, and what the

preservation rules mean, the preservation analysis algorithm

is straightforward. A program graph becomes an abstract data

type with

Sorts: ProgramGraph, Edge, Type

Operations:
getAllEdges : ProgramGraph → finite set of Edge

classify : Edge → {←,→,	,×}
type : Edge → Type

equiv : Edge × Edge → {TRUE, FALSE}.

The equiv operation determines whether two edges—one

in the original program graph and one in the transformed

program graph—are equivalent, i.e., if the edge was preserved.

For simplicity, we have left this underspecified, although

its intent should be clear from the previous section. Now,

preservation is determined by the following algorithm.

Input: P : ProgramGraph (Original program)

P ′ : ProgramGraph (Transformed program)

rule : Type × {←,→,	,×} →
{=,⊆,⊇,=? }

Output: PASS or FAIL

let E := getAllEdges(P)
let E′ := getAllEdges(P ′)
for each Edge e ∈ E

if rule(type(e), classify(e)) is ⊇ or =
but 6 ∃ e′ ∈ E′ s.t. equiv(e, e′) = TRUE, then

FAIL

for each Edge e′ ∈ E′

if rule(type(e′), classify(e′)) is ⊆ or =
but 6 ∃ e ∈ E s.t. equiv(e, e′) = TRUE, then

FAIL

otherwise, PASS

VII. ANALYSIS WITH TEXTUAL INTERVALS

The key to an efficient implementation is being able to

determine, for a particular edge, whether an equivalent edge

exists in the transformed program. If this can be done in O(1)
time, then the above algorithm’s execution time is linear in the

number of edges in the two program graphs. In this section,

we will sketch one way to do this (which also makes the

implementation language independent).

The ASTs in refactoring tools tend to model source code

very closely. This means that they tend to exhibit a very

useful property: Every node in an AST corresponds to a

particular textual region of the source code, and this textual

region can be mapped back to a unique AST node. Consider

the program graph from Figure 1. The source code is 115

characters long. The Class AST node corresponds to the entire

source code—the characters at offsets 0 through 114, inclusive,

or the interval [0, 114]. The field declaration int field =

0; corresponds to the interval [14, 30]. The post-increment

field++; becomes [70, 82].
Since AST nodes can be represented as intervals, we can

use these intervals to describe the semantic edges of a program

graph. For example, the name binding edge from the post-

increment to the field declaration becomes [70, 82]⊲B [14, 30].
(The interval representation of the program graph in Figure 1

is shown in Figure 2(a).)

During a refactoring transformation, it is possible to track

what regions of the original source code are deleted or

replaced, as well as where new source code is inserted. These

textual regions are contained in the affected forests. Since we

know exactly how many characters were added or deleted at

what positions, then for any character outside these regions,

it is possible to determine exactly where that character should

occur in the transformed program. Suppose we have a (partial)

function newOffset(n) that can determine this value, for a

given character offset n in the original program.

Now, suppose we take each edge of the derivative model,

and if an endpoint is contained in the affected forest, we

replace that interval with ∗. We will call the result the

normalized derivative model. Then, we can take each edge

of the initial program graph and use the newOffset function

to determine the equivalent edge in the normalized derivative

model, likewise replacing endpoints in the affected forest with

∗. We will call this the normalized initial model.

If the normalized models are stored as sets (eliminating du-

plicate edges), then each edge in the initial model corresponds

to exactly one edge in the normalized initial model, and each

edge in the derivative model corresponds to exactly one edge

in the normalized derivative model. Now, an edge in the initial

model is equivalent to an edge in the derivative model (in the

notation of the previous section, equiv(e, e′) if, and only if,

their corresponding edges in the initialized models are equal.

By storing the edges of the normalized models in appropriate

data structures (e.g., hash sets), we can determine in O(1) time

if a particular edge occurs in either model.

An example is shown in Figure 2. Suppose, in the Java

program in Figure 1, we attempt to rename the field declaration

from field to i. The transformation is simple: replace the

five characters field at offsets 20–24 (the declaration) and

74–78 (the reference) with the one-character string i. Since

four characters are deleted in each case,

newOffset(n) =











n if n ≤ 19

n− 4 if 25 ≤ n ≤ 73

n− 8 if 79 ≤ n.

The affected forest consists of the field declaration and the

second post-increment (initial intervals [14, 30] and [70, 82],
derivative intervals [14, 26] and [66, 74]). Since field++

changes to i++, the name binding edge for the field reference

disappears and becomes a reference to the local variable i in

the derivative model. Also, a new def-use chain is introduced.

Since the renaming transformation would not preserve name

bindings (or du-chains, for that matter), it should not be

allowed to proceed.

Implementing the preservation analysis using textual inter-

vals, rather than directly on the program graph, has a number

of advantages. It allows the preservation analysis to be highly

decoupled from the refactoring tool’s program representation,

which makes it more easily reusable. It is fairly space-efficient,

since semantic edges are represented as tuples of integers.

Also, there is a fairly natural way to display errors: highlight

the affected region(s) of the source code.

VIII. EVALUATION

In previous sections, we illustrated differential precondition

checking using Safe Delete, Pull Up Method, and Rename as

illustrative examples. We also sketched a linear-time algorithm

Initial Model (a)
[74, 78] ⊲B [14, 30]
[65, 65] ⊲B [46, 60]

[106, 106] ⊲B [46, 60]
[31, 113] ⊲C [46, 60]
[46, 60] ⊲C [61, 69]
[61, 69] ⊲C [70, 82]
[70, 82] ⊲C [83, 109]
[83, 109] ⊲C [−1, −1]
[46, 60] ⊲D [61, 69]
[61, 69] ⊲D [106, 106]

Norm. Initial (b)
∗ ⊲B ∗

[61, 61] ⊲B [42, 56]

[98, 98] ⊲B [42, 56]
[27, 105] ⊲C [42, 56]
[42, 56] ⊲C [57, 65]
[57, 65] ⊲C ∗

∗ ⊲C [75, 101]
[75, 101] ⊲C [−1, −1]
[42, 56] ⊲D [57, 65]
[57, 65] ⊲D [98, 98]

Norm. Deriv. (c)

[61, 61] ⊲B [42, 56]
∗ ⊲B [42, 56]

[98, 98] ⊲B [42, 56]
[27, 105] ⊲C [42, 56]
[42, 56] ⊲C [57, 65]
[57, 65] ⊲C ∗

∗ ⊲C [75, 101]
[75, 101] ⊲C [−1, −1]
[42, 56] ⊲D [57, 65]
[57, 65] ⊲D [66, 74]

∗ ⊲D [98, 98]

Deriv. Model (d)

[61, 61] ⊲B [42, 56]
[70, 70] ⊲B [42, 56]
[98, 98] ⊲B [42, 56]
[27, 105] ⊲C [42, 56]
[42, 56] ⊲C [57, 65]
[57, 65] ⊲C [66, 74]
[66, 74] ⊲C [75, 101]
[75, 101] ⊲C [−1, −1]
[42, 56] ⊲D [57, 65]
[57, 65] ⊲D [66, 74]
[66, 74] ⊲D [98, 98]

Fig. 2. Textual interval models of the program graph from Figure 1, when field is renamed to i

for performing the preservation analysis and argued for its

language independence. But is this technique effective in

practice? We will focus on two questions:

Q1. Expressivity. Are the preservation specifications in §III
sufficient to implement the most common automated

refactorings?

Q2. Performance. When preconditions are checked differen-

tially, what are the performance bottlenecks? How does

the performance compare to a traditional implementa-

tion?

For our evaluation, we implemented a differential precon-

dition checker which we reused in three refactoring tools:

(1) Photran, a popular Eclipse-based IDE and refactoring tool

for Fortran; (2) a prototype refactoring tool for PHP 5; and

(3) a similar prototype for BC.

A. Q1: Expressivity

To effectively answer question Q1, we must first identify

what the most common automated refactorings are. The best

empirical data so far are reported by Murphy-Hill et al. [13].

Table I shows several of the top refactorings; the Eclipse JDT

column shows the popularity of each refactoring in the Eclipse

JDT according to [13, Table 1, “Everyone”]. For comparison,

we have also listed the availability of these refactorings in

other popular refactoring tools for various languages.

We selected 18 refactorings (see Table II): 7 for Fortran,

9 for BC, and 4 for PHP. Five of these refactorings are

Fortran or BC analogs of the five most frequently-used in

Eclipse JDT. Nine others are support refactorings, necessitated

by decomposition. The remaining refactorings were chosen

for other reasons. Add Empty Subprogram and Safe Delete

were the first to be implemented; they helped shape and test

our implementation. Introduce Implicit None preserves name

bindings in an “interesting” way. Pull Up Method required us

to model method overriding and other class hierarchy issues

in program graphs.

It is worth noting that many popular IDEs provide fewer

than 10 refactorings, including Apple Xcode (8 refactorings),

Microsoft Visual Studio (6), and Zend Studio (4). So while

generality is important and desirable (certainly, a technique

that works for 18 refactorings will apply to many others), ex-

pediting and improving the implementation of a few common

refactorings is equally important, perhaps more so.

TABLE I
AUTOMATED REFACTORINGS IN POPULAR TOOLS.

Refactoring E
c
li
p

s
e

J
D

T
(R

a
n
k
)

In
te

ll
iJ

ID
E

A
1

In
te

ll
iJ

R
e
S

h
a
rp

e
r2

M
S

V
is

u
a
l

S
tu

d
io

3

E
c
li
p

s
e

C
D

T

V
is

u
a
l

A
s
s
is

t
X

4

A
p

p
le

X
c
o

d
e
5

Z
e
n

d
S

tu
d

io
6

Rename 1 • • • • • • •

Extract Variable 2 • • ◦ • ◦ ◦ •

Move 3 • • ◦ ◦ ◦ ◦ •

Extract Method 4 • • • • • • •

Change Signature 5 • • • ◦ • ◦ ◦

Pull Up Method 11 • • ◦ ◦ • • ◦

Legend: • Included ◦ Not Included

1 http://www.jetbrains.com/idea/features/refactoring.html
2 http://www.jetbrains.com/resharper/features/code refactoring.html
3 http://msdn.microsoft.com/en-us/library/719exd8s.aspx
4 http://www.wholetomato.com/products/featureRefactoring.asp
5 http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/

XcodeWorkspace/150-Refactoring/refactoring.html
6 http://www.zend.com/en/products/studio/features#refactor

TABLE II
REFACTORINGS EVALUATED.

1. Rename

2. Move

3. Introduce USE

4. Change Function Signature

5. Introduce IMPLICIT NONE

6. Add Empty Subprogram

7. Safe Delete

8. Pull Up Method

9. Copy Up Method

10. Extract Local Variable

11. Add Local Variable

12. Introduce Block

13. Insert Assignment

14. Move Expression

15. Extract Function

16. Add Empty Function

17. Populate Function

18. Replace Expression

F
o
r
tr
a
n

P
H
P

B
C

We wrote detailed specifications of all 18 refactorings in

a technical report [12]. Each specification describes both

the traditional and the differential version of the refactoring,

both at a level of detail sufficient to serve as a basis for

implementation. (Several undergraduate interns working on

Photran implemented refactorings based on our specifications.)

The style of the specifications is similar to the Pull Up Method

example from §III but more precise. For example, the Fortran

refactoring specifications use the same terminology as the

Fortran 95 ISO standard.

We divided refactorings among the three languages as

follows. For all of the refactorings that rely primarily on name

Fig. 3. Rename performance measurements

binding preservation, we targeted Fortran, since it has the

most complicated name binding rules. We targeted flow-based

refactorings for BC: It contains functions, scalar and array

variables, and all of the usual control flow constructs, but it

is a much smaller and simpler language than either Fortran or

PHP. This kept the specifications of these (usually complex)

refactorings to a manageable size without sacrificing any of

the essential preconditions. The one object-oriented refactoring

targeted PHP 5.

We implemented a differential precondition checker (follow-

ing §VII) and used it to implement differential refactorings

in the three refactoring tools, following our detailed speci-

fications. For BC and PHP, we implemented refactorings as

listed in Table II. Since there are no comparable refactoring

tools for these languages, we could not perform differential

testing. However, we ported several relevant unit tests from

the Eclipse CDT and JDT, as well as two informal refactoring

benchmarks [14,15]. For Fortran, we implemented differential

versions of Rename, Introduce Implicit None, Add Empty

Subprogram, and Safe Delete. Photran included traditional

versions of these refactorings, with fairly extensive unit tests,

so we were able to reuse the existing test cases to test the

differential implementations.

B. Q2: Performance

Since a differential precondition checker’s performance de-

pends on the speed of the language-specific front end, as

well what refactoring is being performed and what program is

being refactored, it is difficult to make any broad claims about

performance. In our experience, when a refactoring affects

only one or two files in a typical application, the amount

of time devoted to precondition checking is negligible. Most

of the refactorings we implemented fall into this category.

Performance becomes a concern only at scale, e.g., when a

refactoring potentially affects every file in a project. We will

use Photran’s Rename refactoring as an illustrative example.

Rename is the most expensive of the refactorings we im-

plemented, since it can potentially change name bindings in

every file in the program, it often makes many changes to a

single file, and computing name bindings involves accessing

a index/cross-reference database.

Figure 3 shows performance measurements5 for the Rename

refactoring on three Fortran programs. Two are examples

intended to test scalability: “1 File” is a project with 500 sub-

routine definitions in a single file, while “500 Files” contains

1 subroutine in each of 500 files. “WindFunction” shows the

results of renaming of the wind function in an atmospheric

dispersion simulation (a production Fortran program consisting

of about 53,000 LOC in 29 files, four of which were ultimately

affected by the refactoring). From left to right, the performance

measurements represent creation of the initial interval model,

normalization of this model, running the front end to re-

analyze the modified code, construction of the derivative

interval model, normalization of this model, and, finally, the

preservation analysis.

Note the logarithmic scale on the y-axis: In all three

cases, the performance bottleneck was, by far, the Re-analyze

measurement—i.e., the amount of time taken for the front

end to analyze the modified program and recompute name

bindings. This was generally true for other refactorings as

well. It is not particularly surprising: When an identifier in

one file can refer to an entity in another file, computing name

bindings involves populating and accessing a cross-reference

database.

In our experience, differential precondition checking is not

as fast as traditional precondition checking, but its speed

is acceptable. After all, the amount of time it requires is

essentially the amount of time the front end takes to analyze

the affected files. In the WindFunction example, differential

precondition checking took about 9 seconds, while traditional

checks took just over 1 second. Photran’s name binding

analysis is not particularly fast, and its traditional Rename

refactoring has been heavily optimized over the course of six

years to compensate. In contrast, for the refactorings which

made localized changes to only one or two files, the time

devoted to precondition checking was unnoticeable.

IX. LIMITATIONS

Our preservation analysis has two notable limitations.

First, it assumes that, if a replacement subtree interfaces

with the rest of the AST in an expected way, it is a

valid substitute for the original subtree. It is the refactoring

developer’s responsibility to ensure that this assumption is

appropriate. For example, replacing every instance of the

constant 0 with the constant 1 would almost certainly break a

program, but our analysis would not detect any problem, since

this change would not affect any edges in a typical program

graph. However, the refactoring developer should recognize

that name bindings, control flow, and du-chains do not model

the conditions under which 1 and 0 are interchangeable values.

Second, for our preservation analysis to be effective, the

“behavior” to preserve must be modeled by the program graph.

There are several cases where this is unlikely to be true,

including the following.

5The tests were performed on a 2 GHz Intel Core 2 Duo (MacBook),
Java 1.6.0 24, with the JVM heap limited to 512 MB.

Interprocedural data flow. One particularly insidious ex-

ample is illustrated by an Eclipse bug (186253) reported by

Daniel et al. [9]. In this bug, Encapsulate Field reorders the

fields in a class declaration, causing one field to be initialized

incorrectly by accessing the value of an uninitialized field via

an accessor method. In theory, this could be detected by a

preservation analysis, as it is essentially a failure to preserve

du-chains for fields among their initializers. Unfortunately,

these would probably not be modeled in a program graph,

since doing so would require an interprocedural analysis.

Library replacements, such as replacing primitive int

values with AtomicInteger objects in Java [16], or con-

verting programs to use ArrayList instead of Vector.

Program graphs generally model language semantics, not

library semantics, and therefore are incapable of expressing

the invariants that these refactorings maintain.

X. CONCLUSIONS & FUTURE WORK

In this paper, we classified refactoring preconditions as en-

suring input validity, compilability, and behavior preservation,

and we proposed a technique for many compilability and

preservation preconditions to be checked after transformation

in a generic way. We showed that, if essential semantic

relationships are treated as edges in a program graph, these

edges can be classified based on their relationship to the mod-

ified subtree(s). The preservation requirements for common

refactorings can be expressed by indicating, for each kind of

edge, whether a subset or superset of those edges should be

preserved. By exploiting an isomorphism between graph nodes

and textual intervals, the preservation checking algorithm can

be implemented in a way that is both efficient and language

independent. We implemented this technique in a library and

applied it to refactorings for Fortran 95, PHP 5, and BC.

Much future work is possible. When differential precon-

dition checking is used, how does it affect the amount

of time taken to implement a refactoring? Do refactorings

implemented with differential precondition checking tend to

have more or fewer bugs than those implemented with tra-

ditional precondition checks? Both of these questions will

require empirical data from many developers to answer con-

clusively. What other refactorings can be implemented using

the preservation specifications described in this paper? Can

a program graph representation be extended to overcome the

limitations outlined in the previous section? Can it model C

preprocessor directives? Is it useful to extend a differential

precondition checker with expensive interprocedural analyses

for the purposes of testing but to replace these analyses with

cheaper, traditional precondition checks in production? We

hope that researchers will address these and other questions

about differential precondition checking in the future.

ACKNOWLEDGMENT

This research is part of the Blue Waters sustained-petascale

computing project, which is supported by the National Science

Foundation (award number OCI 07-25070) and the state of Illi-

nois. Blue Waters is a joint effort of the University of Illinois

at Urbana-Champaign, its National Center for Supercomput-

ing Applications, IBM, and the Great Lakes Consortium for

Petascale Computation. The authors would like to thank the

anonymous reviewers, as well as Rob Bocchino, John Brant,

Brett Daniel, Danny Dig, Matthew Fotzler, Milos Gligoric,

Vilas Jagannath, Ashley Kasza, Darko Marinov, Stas Negara,

and members of the Brett Daniel Software Engineering Semi-

nar for providing invaluable feedback on earlier drafts of this

paper.

REFERENCES

[1] J. L. Overbey and R. E. Johnson, “Generating rewritable

abstract syntax trees,” in SLE 2008, ser. LNCS, vol. 5452,

pp. 114–133.

[2] K. Kennedy and J. R. Allen, Optimizing compilers for

modern architectures: a dependence-based approach.

San Francisco: Morgan Kaufmann, 2002.

[3] M. Schäfer and O. de Moor, “Specifying and implement-

ing refactorings,” in SPLASH ’10.

[4] M. Schäfer, T. Ekman, and O. de Moor, “Sound and

extensible renaming for Java,” in OOPSLA ’08.

[5] M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor,

“Stepping stones over the refactoring rubicon –

lightweight language extensions to easily realise refac-

torings,” in ECOOP ’09.

[6] M. Schäfer, J. Dolby, M. Sridharan, F. Tip, and E. Torlak,

“Correct refactoring of concurrent Java code,” in ECOOP

’10.

[7] C. Reichenbach, D. Coughlin, and A. Diwan, “Program

metamorphosis,” in ECOOP ’09.

[8] M. Verbaere, R. Ettinger, and O. de Moor, “JunGL: a

scripting language for refactoring,” in ICSE’06.

[9] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Auto-

mated testing of refactoring engines,” in FSE ’07.

[10] J. L. Overbey, “A toolkit for constructing refactoring

engines,” Ph.D. dissertation, University of Illinois at

Urbana-Champaign, 2011.

[11] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens,

“Formalizing refactorings with graph transformations,” J.

Softw. Maint. Evol., vol. 17, no. 4, pp. 247–276, 2005.

[12] J. L. Overbey, M. J. Fotzler, A. J. Kasza, and

R. E. Johnson, “A collection of refactoring specifica-

tions for Fortran 95, BC, and PHP 5,” Tech. Rep.

http://jeff.over.bz/papers/2011/tr-refacs.pdf, 2011.

[13] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we

refactor, and how we know it,” in ICSE ’09.

[14] “Refactoring benchmarks for extract method,”

http://c2.com/cgi/wiki?RefactoringBenchmarksFor

ExtractMethod.

[15] “Refactoring benchmarks for pull up method,”

http://c2.com/cgi/wiki?RefactoringBenchmarksFor

PullUpMethod.

[16] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring

sequential Java code for concurrency via concurrent

libraries,” in ICSE ’09, 2009, pp. 397–407.

