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Many integrated development environments (IDEs) provide extensibility mechanisms, which allow third-party
developers to add new functionality to the IDE. For IDEs that provide automated refactoring support, it is common
to provide the ability to contribute new automated refactorings.

However, automated refactorings manipulate source code, so implementing an automated refactoring requires
a data structure that describes the structure of source code. Refactoring tools almost always use a data structure
called an abstract syntax tree (AST). ASTs describe source code hierarchically: e.g., classes contain methods,
methods contain statements, statements contain expressions, etc. ASTs are used in compilers and static anal-
ysis tools, but refactoring tools impose more stringent requirements—specifically, the ASTs must be suitable for
manipulating the user’s source code.

If an IDE provides an application programming interface (API) that allows third parties to contribute new refactor-
ings, then it is often helpful for that API to provide access to ASTs as well. This pattern considers ASTs exposed
by such APIs, identifying the common elements necessary to provide both a clean APl and a data structure
suitable for implementing nontrivial refactorings.

1. CONTEXT

You are implementing a refactoring engine or a similar tool that makes automated edits to source code. You have
provided a mechanism that allows third parties to contribute new refactorings/transformations. You have an API
for adding, deleting, and changing source code files (so the mechanism to, say, “delete the first 27 characters of
main.c” is well-defined).
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2. PROBLEM

Although you have an API for contributing refactorings/transformations, and you have provided the ability to make
string-like edits to source code, this is a very primitive API that eschews any real knowledge about the syntactic
structure of the language being refactored.

Consider a simple Java refactoring that adds braces to the bodies of if statements, if they do not already exist.
For example, it would make the following change.

if (a < b) if (a < b) {
if (¢ < d) if (c < d) {
System.out.println("a"); System.out.println("a");
else - } else {
System.out.println("b"); System.out.println("b");
}
}

Even this simple refactoring requires nontrivial knowledge of Java’s syntax, including how the dangling else is
matched with a corresponding if.

How can the refactoring engine provide an API that exposes the syntactic structure of programs in a way that
is useful for implementing refactorings?

3. FORCES

—The API must expose fine-grained details about the syntax of a program. For example, the preceding example
requires being able to determine the presence or absence of braces { }, even though they are semantically
irrelevant.

—NMany refactorings are initiated only after the user selects a range of source code in a text editor. Therefore, the
API must allow clients to determine what syntactic construct(s) are selected.

—Clients must be able to use the APl to manipulate source code in a way that is minimally invasive: refactorings
that only affect a small, isolated region of the source code should not change any source code outside that
region. This includes preserving the program’s comments and formatting [Sommerlad et al. 2008].

—The API must follow general principles of good API design, including being easy to learn and difficult to misuse.

—The API should be usable when building refactorings for large code bases. Automated refactorings are most
useful for maintaining such codes.

4. SOLUTION

Use a parser for the language being refactored to construct an abstract syntax tree, or AST. Make the AST
immutable—i.e., its structure cannot be changed—nbut provide source mapping information so that every node in
the AST can be mapped to a particular substring of the original source code.

4.1 Abstract Syntax Trees

(Readers familiar with ASTs may want to skip to §4.2.)

Programs have a natural hierarchical structure. For example, a Java source file contains a package declara-
tion, import statements, and one or more type declarations (i.e., class/interface declarations). A type declaration
contains field and method declarations. A method’s body consists of a sequence of statements. And so forth.

An abstract syntax tree (AST) is a data structure that describes a particular program in terms of this hierarchy.
Continuing with the Java example, an AST typically describes the structure of a single Java source file. The root
node has three child nodes, corresponding to the three parts of a Java source file: one child node describes the
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package statement, another contains a list of import
statements, and a third contains a list of type declarations.
A type declaration has several child nodes, which describe
(among other things) its visibility, the name of the class
or interface, and the field/method declarations in its body.
A field declaration has child nodes describing its visibility,
type, and so forth.

Figure 1 shows a visualization of an AST for the follow-
ing program:

public class Example {
public int FIVE = 5;
}

Notice how deeper levels of the tree describe pro-
gressively more fine-grained syntactic structures. The
root node represents the entire Java source file.
The highlighted node—a VariableDeclarationFragment—
represents FIVE = 5, while its child nodes represent its
constituent parts: the identifier FIVE and the numeric literal
5. These are leaf nodes, since these tokens (like keywords,
identifiers, and numeric literals) represent the smallest syn-
tactic units in the language.

Developers familiar with the HTML or XML DOM (Doc-
ument Object Model) will find this structure familiar. The
DOM is effectively an abstract syntax tree for HTML/XML
documents.

Deeper discussions on ASTs can be found in many intro-
ductory textbooks on compiler construction, such as [Aho
et al. 2006] and [Torczon and Cooper 2011]. Such books
also discuss how parsers are constructed, including how
they can be modified to construct ASTs.

4.2 Fulfilling the Requirements of Refactoring

ASTs are not unique to refactoring tools. They were used
in compilers long before refactoring tools existed. They are
also used in static analysis tools, prettyprinters, and other
tools that analyze source code. This makes reuse very
tempting: If there is already a compiler for a language, and
it contains an AST, why not reuse it in a refactoring tool?
Unfortunately, an AST designed for use in another con-
text (e.g., a compiler) is not necessarily suitable for refac-
toring. This is because refactoring tools impose two very
significant—and unusual—requirements on their ASTs.

[ii—_ ASTView ﬁ ="
Example.java (AST Level 4). Creation time: 1 ms. Size: 1{ =

3 X oo |lrEs

PACKAGE: null
IMPORTS (0}
TTYPES (1)
¥TypeDeclaration [0, 46]
P> type binding: Example
JAVADOC: null
¥MODIFIERS (1)
¥ Modifier [0, 6]
KEYWORD: "public'
INTERFACE: 'false’
- MAME
TYPE_PARAMETERS (0}
SUPERCLASS_TYPE: null
SUPER_INTERFACE_TYPES (D)
¥BODY_DECLARATIONS (1)
¥FieldDeclaration [24, 20]
JavanOC: null
¥MODIFIERS (1)
¥Modifier [24, 6]
KEYWORD: 'public'
TTYPE
¥PrimitiveType [31, 3]
b > type binding: int
PRIMITIVE_TYPE_CODE: 'int'
¥FRACMENTS (1)
P> variable binding: Example.FIVE
T NAME
¥SimpleName [35, 4]
b= (Expression) type binding: int
P> variable binding: Example.FIVE
Boxing: false; Unboxing: false
ConstantExpressicnValue: null
IDEMTIFIER: 'FIVE'
EXTRA_DIMENSIOMNS: 'O’
WINITIALIZER
¥NumberLiteral [42, 1]
b= (Expression) type binding: int
Boxing: false; Unboxing: false
ConstantExpressionValue: 5
TOKEN: '5'
> CompilationUnit: Example.java
> comments (O}
> compiler problems (0)
P = AST settings
P = RESOLVE_WELL_KMNOWN_TYPES

Fig. 1.
Development Tools (JDT).

Visualization of an AST produced by the Eclipse Java

(1) To be useful for refactoring, an AST must accurately and precisely model the user’s source code at a very
fine level of detail. It may even be necessary to include information about punctuation and comments in order
to refactor code appropriately [Sommerlad et al. 2008].

(2) It must be possible to map nodes in the AST to locations in the source code, and vice versa.
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To illustrate the first requirement, consider an example from Fortran. The Fortran language contains a num-
ber of input/output statements. Two of these are PRINT and WRITE: the statements print *, "X" and write
(x,*) "X" can be used interchangeably to print the string X to standard output. In general, the statement print
fmt, expr is equivalent to the statement write (*, fmt) expr. Most compilers type check and translate them
identically. So, a compiler may choose to represent PRINT statements as WRITE statements in its AST. The GNU
Fortran compiler does this, for example. However, the ability to convert PRINT statements to WRITE statements ac-
tually makes for a useful refactoring. (Consider a program that uses PRINT statements to write to standard output,
but the programmer later needs to use WRITE statements to write to a file instead.) To implement this refactoring,
a refactoring tool needs to be able to distinguish PRINT statements from WRITE statements—a difficult task if they
are represented identically in the AST.

To explain the second requirement—that it must be possible to map nodes in the AST to locations in the source
code, and vice versa—recall that many refactorings are initiated only after the user selects a range of source code
in a text editor. Usually, this selection is represented by two numbers: the offset of the starting character and the
length of the selection. In the simple Java program whose AST is shown in Figure 1, the substring FIVE = 5
is eight characters long and begins with the 36th character in the source code (offset 35, assuming the first
character is considered to be at offset 0). If the user selects the text FIVE = 5 in the text editor, it must be easy
to determine that this corresponds to the VariableDeclarationFragment node in the AST.

The easiest way to map AST nodes to source locations is to store source location information in the AST
nodes themselves. Again, consider the JDT AST shown in Figure 1, and note the numbers in square brackets.
The highlighted node is displayed as “VariableDeclarationFragment [35, 8]": this AST node corresponds to the
eight-character string beginning at offset 35 (FIVE = 5). Its child node corresponding to the identifier FIVE is
attributed with the offset-length pair [35, 4], while the numeric literal 5’s source location is [42, 1].

Now, consider what happens when a user selects text in the text editor. This can be represented as an offset-
length pair. When source location information is available for every AST node, it becomes fairly easy to determine
what syntactic construct corresponds to the text selection corresponds to: simply walk the tree, searching for a
node whose source location aligns with the user’s selection.

Since AST nodes at deeper levels of the tree represent finer-grained syntactic constructs than their ancestor
nodes, ASTs with source location information typically exhibit a nice property: the source location of a child node
will always be contained within the source location of its parent. This property can be used to expedite searches
based on source location information. For example, if a particular node corresponds to the source location [35,
8], and you are searching offset 63, then the desired node cannot possibly be a descendent of that node.

4.3 Mutable vs. Immutable ASTs

When ASTs are used in compilers, it is common to make them mutable, meaning that nodes can easily be added,
changed, or deleted from the tree. For example, a compiler might determine that a = b*1 can be simplified to
a = b, and then change the AST accordingly.

At first, this seems like a reasonable mechanism for refactoring tools to use as well. To remove a field dec-
laration from a program, simply delete its FieldDeclaration node from the AST (along with all its children). To
change the name of FIVE, change the contents of its SimpleNameNode in the AST. Of course, some mechanism
is needed to prettyprint the modified AST, so these changes can be translated back into source code, but that is
relatively straightforward to implement.

Unfortunately, while a mutable AST can provide an elegant means of manipulating source code, that are other
issues that can make mutable ASTs problematic from an APl design perspective. Some notable issues include
the following.

—AST nodes contain source location information. After the structure of the AST is changed, what does the
source location information in each node represent: the “old” source location (in the original code) or the “new”
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location (after it has been modified)? If it represents the old location, what should the source location be when
new nodes are inserted into the tree? If it represents the new location, then every time a change is made to
the tree, source location information must be updated for every node in the tree, which may be expensive ... or
else a clever implementation (e.g., computation from relative offsets) must be used instead.

—AST nodes may be removed from the tree, leaving them orphaned. Suppose a client traverses the AST, storing
pointers to some “interesting” nodes in a collection. Then, an ancestor of one of those nodes is removed from
the AST. This will leave the client in a difficult-to-debug situation where his collection contains pointers to nodes
that no longer exist in the AST.

—Semantic information may be invalidated. Refactorings often need to determine, for a particular use of a vari-
able, what declaration that use corresponds to. For example, in Java, if a field and a local variable were both
named x, then in the expression this.x = x, the first x would refer to the field, while the second would refer
to the local variable. However, if the local variable declaration were removed, the second x would refer to the
field instead. This can be confusing to clients, since information collected about the program at one point in
time may no longer be true after the tree’s structure changes.

—It may be possible to mutate the AST so that it does not represent a legal program. It might even be possible to
mutate the AST so that it is no longer a tree at all. In Java, classes can contain other classes. What happens
if a client tries to make a class an inner class of itself? (This could turn the tree into a cyclic graph.) The API
for modifying the AST’s structure could try to prevent such things, but attempting to detect and prevent every
possible mistake would be difficult and potentially expensive.

—NMutability can be problematic in multithreaded code.

Mutable ASTs were used in the original Smalltalk Refactoring Browser [Roberts et al. 1997], as well as in
CRefactory [Garrido 2005] and Photran [Overbey and Johnson 2009]. Many compilers use mutable ASTs inter-
nally. However, these tools have one thing in common: the mutable AST is not accessible via any public API. It is
intended for internal use only, by developers who should be better equipped to handle all of the caveats.

Guidelines for API design are discussed in detail in Jaroslav Tulach’s Practical APl Design [Tulach 2008]. A
presentation by Joshua Bloch [Bloch 2006] offers excellent advice as well. Both authors suggest minimizing the
amount of mutability in an API. Immutable objects tend to have simpler interfaces, and they are thread-safe. Both
authors also emphasize that APls should be easy to learn (even for programmers who do not read all of the API
documentation) and difficult for clients to misuse. Given these guidelines, and the list of liabilities for mutable
ASTs given above, it seems preferable from the perspective of someone attempting to publish an API to avoid
mutable ASTs. But this raises a different question: If ASTs are immutable, what API should be provided for clients
to manipulate source code?

4.4 Using Immutable ASTs for Source Code Manipulation

The ultimate goal of a refactoring tool is to modify the user’s source code. When ASTs are immutable, this cannot
be done by modifying the structure of the AST. Instead, it is done differently: Treat the source code as a string,
and use the source location information in the AST to add, replace, and delete substrings.

As an example, consider deleting a field declaration. In a mutable AST, you would simply remove the FieldDec-
laration node from the AST. With an immutable AST, you would retrieve the source location mapping from the
FieldDeclaration node, and then remove that substring from the source file.

In implementation, the code for removing a field declaration using a mutable AST would probably be some-
thing like field.removeFromTree(). The code for doing the same with an immutable AST would be something like
sourceCode.deleteSubstring(field.getOffsel(), field.getLength()).

The situation gets a bit worse when changes are made to nested constructs. Recall the example from Section 2,
which added braces to two if statements, one nested inside the other. Suppose the outer if statement were
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modified first: Adding braces to it would change the position at which the closing brace for the inner if statement
would need to be added. Consider a somewhat simplified example. Pictorially:

P Ao

4

ale[ D] [ [sfe]2D] [s[<D]s] ]

012 3 45 6 7 8 91011121314 151617 18 19

The body of the inner if statement begins at offset 12 in the original code. But after adding braces to the outer if
statement, the body of the inner if statement is shifted to offset 14.

In other words, when refactorings affect nested language constructs, offset/length computations can become
complex, since the edits for one construct may interact with the edits for another construct.

So, manipulating source code using a mutable AST is simpler, and it more directly expresses the programmer’s
intention. Manipulating source code using offset/length information leads to ugly client code. The client code
can easily become littered with variables holding character offsets and methods that perform intricate string
manipulations.

In their discussions of API design, Bloch submits that it should be “easy to read and maintain code that uses
[the API]” [Bloch 2006], and Tulach notes the advantages of APls where the clients “don’t describe step-by-step
what they want your API to do. Rather, they ‘declare’ what they want to have happen and then rely on your API to
do it...” [Tulach 2008, p. 225].

So, is it possible to provide a cleaner source manipulation API, while still using an immutable AST? It is, but
some additional APl is needed.

One option is to provide an API that allows clients to specify what changes they want to make in terms of
AST nodes. This APl can then translate these into string edits. For example, an APl might offer a Rewriter
class. The client would inform the Rewriter that it wants to effectively delete a particular FieldDeclaration node
from the AST: rewriter.delete(field). When it is ready to manipulate the source code, it delegates this task to the
rewriter: rewriter.rewrite(sourceCode). This is illustrated in Figure 2. The Eclipse Java and C/C++ Development
Tools [Ruegg 2012] take this approach (with slightly different class and method names).

A second option is to work with ASTs in a functional style, where every edit returns a new AST. So, a call to
field.removeFromTree() would not change the existing AST, but rather it would return a new AST that has the
given field omitted. (Of course, this requires a very careful implementation. Memory consumption and copying
are a concern, particularly when ASTs are large. Also, a mechanism must be provided so that clients can easily
map nodes in the original tree to the “same” node in the modified tree, and vice versa.)

5. KNOWN USES

Immutable, source-mapped ASTs are used by the Eclipse Java Development Tools (JDT) and C/C++ Develop-
ment Tools (CDT), as well as the Scala IDE for Eclipse, the Microsoft “Roslyn” Community Technology Preview
(CTP), Clang, and the original refactoring engine in Apple Xcode. However, while all use immutable ASTs with
source mapping information, the actual rewriting APIs vary substantially.

Both Clang and the original refactoring engine in Xcode 3.0 modify source code using offset-length information
directly. Notably, Clang offers a RewriteRope class—essentially, a custom string class that allows for efficient
mid-string insertions and deletions’. (It uses a B-tree structure inspired by, but not identical to, that described in
the original paper on Ropes [Boehm et al. 1995].)

Thttp://clang.1lvm.org/doxygen/classclang_1_1RewriteRope.html
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Fig. 2. Sequence diagram illustrating use of a Rewriter to modify source code.

The Eclipse Platform is designed to be language-independent; individual plug-ins like JDT and CDT determine
what languages it supports. The Eclipse Platform includes a component called the Eclipse Language Toolkit
(LTK) [LTK 2006]. which provides (among other things) a language-independent API for manipulating text files
using offset/length information. Specifically, TextEdit objects describe individual changes (like “delete three char-
acters starting at offset 462”), and many such changes are aggregated into a single Change object that represents
the net effect of a refactoring. Of course, the LTK provides the infrastructure necessary to apply Change objects,
writing the modifications to disk, as well as to undo those changes at a later point in time.

Eclipse JDT provides a class (ASTRewrite?) that allows the programmer to specify modifications in terms of
Java AST nodes, and then translates those changes into an LTK TextEdit object. Eclipse CDT'’s refactoring engine
is based on JDT’s and follows a similar design; it offers its own version of ASTRewrite [Riegg 2012].

Refactoring support in the Scala IDE for Eclipse® takes a functional approach, implementing refactorings as
tree transformations. Source generation is handled separately: one printer uses position information to retain the
formatting of the original code, while another pretty-prints new nodes that were added to the AST [Stocker 2010].

Microsoft’'s “Roslyn” CTP takes a functional approach, where imperative methods on AST nodes do not modify
the AST but rather return a new AST [Vogel 2012]. Since a naive implementation could make this prohibitively
expensive, the Roslyn team devised an implementation that they call red-green trees (named after the colors of
the whiteboard markers that were used during the design meeting) [Lipper 2012]. Essentially, the AST exposed
via the API (the “red tree”) is a fagade for a different, internal tree (the “green tree”); the implementation attempts
to reuse existing AST nodes whenever possible (which is possible since all nodes are immutable).
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