
OpenRefactory/C: An Infrastructure for Building
Correct and Complex C Transformations

Munawar Ha�z, Jeffrey Overbey, Farnaz Behrang, and Jillian Hall
Auburn University

f munawar,joverbey,fzb0012,jnh0008g@auburn.edu

Abstract
OpenRefactory/C is a refactoring tool and, more generally,
an infrastructure that resolves the challenges of buildingC
program transformations. In this paper, we describe its archi-
tecture, extensibility features, and the transformationsim-
plemented. We also discuss features that will make Open-
Refactory/C attractive to researchers interested in collabo-
rating to build new C program analyses and transformations.

Categories and Subject DescriptorsD.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement

Keywords Program Transformation, C

1. Introduction
C is one of the most popular programming languages. Yet,
when it comes to making even a small change to a program,
such as renaming a variable, C programmers do it manually.
IDEs for C support a few refactorings, but these tend to be
slow and buggy [5]. There are two challenges that make it
hard to build tools for transforming C programs. First, C pro-
gramming IDEs ignore multiple con�gurations of C prepro-
cessor because of the complexity. The resulting transforma-
tions are inaccurate. Second, IDEs for C do not support so-
phisticated static analyses, e.g., Eclipse CDT only supports
name binding, type analysis and limited control �ow analy-
sis. Without data �ow analysis, it is impossible to implement
any non-trivial transformations. Preprocessors and multiple
con�gurations make static analysis even more complicated.

OpenRefactory/C [7] is an infrastructure for building
refactorings and similar source-level transformations for C,
while correctly handling all of the complexities of C. Some

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WRT '13, October 27, 2013, Indianapolis, Indiana, USA.
Copyright c 2013 ACM 978-1-4503-2604-9/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541348.2541349

of these goals are still a year or two away, but work is pro-
gressing rapidly. The OpenRefactory/C codebase consists of
more than 400,000 lines of Java code. It contains support
for a number of static analyses, including data �ow and alias
analysis, and work is currently under way to support the
analysis and transformation of programs containing prepro-
cessor directives. We have developed 12 transformations on
this platform. Some of these are commonly used refactor-
ings; others are behavior-enhancing transformations aimed
at �xing security vulnerabilities [1, 6].

This paper makes three contributions:

� It describes OpenRefactory/C's architecture (Section 2).

� It explains how OpenRefactory/C can be used from a
variety of text editors and IDEs (Sections 3 and 4).

� It discusses the refactorings and program transforma-
tions implemented and our testing methods (Section 5.3).

2. OpenRefactory/C Architecture
OpenRefactory consists of multiple front ends communicat-
ing with a back end following a JSON protocol (Figure 1).
Front endsprovide the user interface. Theback end, writ-
ten in Java, contains the infrastructure to access the �le
system, parse and analyze source code, and create source
code patches. The back end supports many programming
languages; OpenRefactory/C is the C-speci�c infrastructure.
The following sections describe these.

3. Front Ends
Developers write C code in many environments, from text
editors like Vim to full-�edged IDEs like Eclipse. Anecdo-
tally, we have found that developers that prefer Vim, for ex-

Figure 1. OpenRefactory Architecture



Figure 2. Program Transformations in Diff-view in Vim and Eclipse

ample, will not switch to Eclipse just for refactoring support.
So, OpenRefactory/C was designed to be accessible from all
of these environments. Currently, OpenRefactory/C supports
four front ends: an OpenRefactory Eclipse plug-in, a Vim
plug-in, a command line user interface, and a Web demo
at thewww.openrefactory.org Web site. Figure 2 shows
refactorings in Vim and Eclipse. We are working on integrat-
ing support for Notepad++ and Sublime Text. The Eclipse
plug-in contains additional visualizations for various static
analyses to assist refactoring tool builders; Figure 3 shows a
visualization of how a variable's declaration is bound to its
references.

Figure 3. Name Binding Visualization in Eclipse

4. JSON Protocol
OpenRefactory/C's four front ends are all written in differ-
ent programming languages—Eclipse in Java, Vim in Vim
Script, etc. This poses an interoperability problem, since
these front ends must communicate with the same back end
(written in Java).

Shanbhag [16] addressed a similar problem building an
interface for Garrido's CRefactory [2]: the refactoring en-
gine, written in Smalltalk, needed to be run from the Emacs
text editor. But Emacs plug-ins are written in Emacs Lisp.
This was resolved by having the refactoring engine act as a
server, with the client communicating via sockets. Results
were sent to the client as patch �les; Emacs could then dis-
play differences to the user and patch the relevant �les.

Our approach is similar. However, unlike CRefactory, the
back end does not act as a TCP/IP server. Instead, the front

end is responsible for launching the back end process, and
the two communicate via standard I/O, i.e., via pipes. (In the
case of the Web demonstration, the system is distributed: the
front end is written in JavaScript and runs in a Web browser,
while the back end runs on the Web server.)

Communication between the front and back ends is for-
matted in JavaScript Object Notation (JSON). The client
sends a query (formatted as JSON) to the server, which then
interprets the command, performs the requested action, and
returns a reply (again formatted as JSON). JSON was chosen
because it is human-readable (unlike a binary protocol), con-
cise, and easy to parse; JSON parsers exist for nearly every
language, including Vim Script. A complete speci�cation of
the JSON protocol is available [12].

A sample dialogue between the Web front end and the
OpenRefactory back end is shown in Figure 4. The client
opens the connection and sets the protocol version. Since the
Web front end does not share a �le system with the back end,
it issues aput command to transmit the contents of�le.c to
the back end. (The Eclipse and Vim front ends would simply
point the back end to the project directory.) Then, the front
end issues theparamscommand to determine what input
is required. Finally, it issues thexrun command to perform
the transformation and retrieve the changed �le. Theclose
command shuts down the refactoring engine.

5. Back End
5.1 Back End Architecture

The OpenRefactory back end consists of a language-agnostic
core and two types of plug-ins:

� Language-agnostic core.The OpenRefactory core pro-
vides an abstraction of the �le system and provides in-
terfaces that all transformations must implement. It also
provides the implementation of the JSON server.

� File system plug-ins.Plug-ins add support for �le sys-
tems. One plug-in supports the local �le system, used
by the Vim and command-line user interfaces; another
provides a “virtual” �le system to support the Web
demo (for security and performance reasons); a third
supports the Eclipse File System.



C: f "command":"open", "version":0.1 g
S: f "reply":"OK" g
C: f "command":"setdir","mode":"web" g
S: f "reply":"OK" g
C: f "command":"put","filename":"file.c","contents":"int main() fn n return 0; nngnn" g
S: f "reply":"OK" g
C: f "command":"params","transformation":"rename","texts election": f "filename":"file.c","offset":4,

"length":0 gg
S: f "reply":"OK","params":[ f "default":"","label":"New name:","prompt":"Please ent er a new name for this

identifier.","type":"string" g, f "default":false,"label":"Replace occurrences in commen ts","prompt":"Should
occurrences in comments be replaced as well?","type":"boo lean" g] g

C: f "command":"xrun","transformation":"rename","textsel ection": f "filename":"file.c","offset":4,
"length":0 g,"arguments":["abcde",false] g

S: f "reply":"OK","description":"Rename main to abcde",
"files":[ f "filename":"file.c","contents":"int abcde() fn n return 0; nngnn" g],
"log":[ f "message":"The program entrypoint must be called n"mainn". Renaming the main function will cause the
program to have no entrypoint.","severity":"error" g] g

C: f "command":"close" g
S: Server terminates

Figure 4. Sample dialogue between the OpenRefactory Web demonstration front-end/client (C) and back-end/server (S).

� Language-speci�c plug-ins.Plug-ins add support for
individual languages to the language-agnostic core.
Most of our current work has focused on supporting C,
but plug-ins for Lex/Yacc and several other languages
are in the early stages of development.

5.2 C Infrastructure

5.2.1 Syntax Analysis and Source Manipulation

OpenRefactory/C uses a custom parser that supports the ISO
C99 standard [9] with GNU extensions. It is integrated with
a preprocessor that was hand-written for OpenRefactory/C.

The preprocessor currently supports single-con�guration
preprocessing (i.e., only one branch of an#ifdef directive
is analyzed); however, it is currently being extended to sup-
port multiple con�gurations following techniques described
by Overbey et al. [13] and Gazzillo et al. [4]. The original
work on refactoring in the presence of multiple con�gura-
tions is due to Garrido [2, 3].

The decision to construct a custom parser and preproces-
sor for OpenRefactory/C was a dif�cult one, given the num-
ber of parsers already available. The motivation was twofold.

First, one of the main research goals for OpenRefactory/C
is to support analysis and transformation of code containing
C preprocessor directives, with correct results under all fea-
sible preprocessor con�gurations. These changes require in-
tricate modi�cations to every part of the infrastructure: the
preprocessor, the lexical analyzer, the parser, the abstract
syntax tree, every static analysis, and every transformation.
In OpenRefactory/C, these components were all built, from
the beginning, with this agenda in mind. (For example, the
parsing algorithm we intend to use to support multiple con-
�gurations requires an LALR(1) parser [4, 13], and ana-
lyzing name bindings under multiple con�guration requires
augmenting name bindings with information about the pre-
processor con�gurations under which that name binding is
valid [2].) After careful consideration, we determined that

building an infrastructure from scratch was the most cost-
and time-effective way to guarantee that all of our technical
constraints could be met.

Building a custom infrastructure also allowed us to have
con�dence that we could provide a satisfactory API for
third-party developers to extend OpenRefactory/C with new
refactorings. OpenRefactory/C's C parser and rewritable ab-
stract syntax tree are generated using Ludwig [13], which
was also used to generate the syntactic manipulation in-
frastructure in Photran [14], a refactoring tool for Fortran.
Photran 8.1 has 39 refactorings contributed by over 40 dif-
ferent developers. Since Photran's source manipulation API
has been used successfully by a wide audience—and it has
had several years to mature and stabilize—OpenRefactory/C
adopted a similar API.

Internally, OpenRefactory/C uses mutable abstract syntax
trees (ASTs) as its primary program representation. Source
code manipulation is performed by modifying the AST and
later traversing the tree to output the revised source code (or
create a patch �le). All AST nodes implement a common in-
terface that includes methods to perform tree traversals using
the Visitor pattern, �nd nodes by type, determine preproces-
sor constructs af�xed to nodes, and of course, manipulate the
source code associated with a node.

5.2.2 Static Analysis for C

OpenRefactory/C supports several static analyses:

� Name Binding Analysis.OpenRefactory/C stores name
binding information as relationships among nodes in the
AST. Any AST node representing a name reference can
be queried to return the corresponding declaration node.
The name binding edges are used in some checks for
behavior preservation [11, 15].

� Type Analysis.Types are dynamically computed as
queries to the AST; this, in turn, requires name binding
information.



� Control Flow Analysis.Control �ow predecessors and
successors are determined by querying AST nodes; they
are computed dynamically using an improved version of
Morgenthaler's [10] algorithm.

� Alias Analysis.OpenRefactory/C supports an inclusion-
based (Andersen-style) alias analysis for local variables.
Constraints are derived from the source code and solved
using Hardekopf's [8] algorithm.

� Data Flow Analysis.OpenRefactory/C stores intrapro-
cedural reaching de�nitions and de�nition-use relation-
ships in the AST.

� Dependence Analysis.OpenRefactory/C supports scalar
data dependence analysis for local variables, as well as
computation of control dependences. Control and data
dependences check behavior preservation of transforma-
tions that move code within a procedure.

5.3 Transformations

Currently 12 transformations have been implemented in
OpenRefactory/C infrastructure. Of them, 7 are refactorings
and 5 are behavior enhancing program transformations.

� Refactorings.OpenRefactory/C supports simple refac-
torings, such as RENAME, ADD FUNCTION DECLA-
RATION, MOVE EXTERNAL DECLARATION, CORRECT

INDENTATION, and MOVE STATEMENT. It also supports
composite refactorings, such as EXTRACT FUNCTION

(composed of 11 micro-refactorings) and EXTRACT LO-
CAL VARIABLE (composed of 7 micro-refactorings).

� Behavior Enhancing Program Transformations.ADD

INTEGER CAST, CHANGE INTEGER TYPE, REPLACE

ARITHMETIC OPERATOR, SAFE L IBRARY REPLACE-
MENT, and SAFE TYPE REPLACEMENT are security-
oriented program transformations [1, 6]. They are com-
plex transformations that make extensive use of Open-
Refactory/C's static analyses; they are intended to im-
prove the security of systems by removing “bad-path”
behaviors (like buffer over�ows) while otherwise pre-
serving behavior.

Previously, we presented a simple yet extremely effective
approach [5] to detect unique, real bugs in refactoring en-
gines and to estimate their reliability. Through our research
we concluded that refactoring engines are underused mostly
due to unpredictability of the refactorings, and that thereis
still a need for improvement and development of new in-
frastructure for building more reliable refactoring engines.
We used this approach to test the program transformations
in OpenRefactory/C by applying the refactorings on a large
number of places in real software projects and effectively
clustering the failures to �nd bugs. EXTRACT FUNCTION

REFACTORINGhas been tested using this approach. We ap-
plied each micro-refactoring on more than 12000 targets in
three software projects and found and �xed 42 bugs.

6. Future Work
Work is underway to allow OpenRefactory/C to support
multiple preprocessor con�gurations. This will allow it to
transform un-preprocessed source code, exactly as the pro-
grammer sees it, and guarantee correctness under all feasible
macro con�gurations. Additionally, it will support transfor-
mations for mixed-language programs.

An open source release of OpenRefactory/C is planned
for the near future. We welcome contributions and collabo-
rations with other researchers. Correct analysis and transfor-
mation of C source code is a vast and dif�cult topic, and we
believe OpenRefactory/C is well positioned to be the plat-
form researchers will use to address it.

Acknowledgments
This work is supported by the National Science Foundation
under Grant Nos. 1217271 and 1217271-REU.

References
[1] Z. Coker and M. Ha�z. Program transformations to �x C

integers. InICSE, pages 792–801, 2013.

[2] A. Garrido. Program Refactoring in the Presence of Prepro-
cessor Directives. PhD thesis, UIUC, 2005.

[3] A. Garrido and R. Johnson. Refactoring C with conditional
compilation. InASE, 2003.

[4] P. Gazzillo and R. Grimm. SuperC: Parsing all of C by taming
the preprocessor. InPLDI, pages 323–334, 2012.

[5] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Ha�z, and
D. Marinov. Systematic testing of refactoring engines on real
software projects. InECOOP, Volume 7920 ofLNCS, pages
629–653, 2013.

[6] M. Ha�z. Security On Demand. PhD thesis, UIUC, 2010.

[7] M. Ha�z and J. Overbey. OpenRefactory/C: An infrastructure
for developing program transformations for C programs. In
OOPSLA, 2012.

[8] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast
and accurate pointer analysis for millions of lines of code. In
PLDI, pages 290–299, 2007.

[9] International Organization for Standardization.ISO/IEC
9899:TC3: Programming Languages — C. Sep 2007.

[10] J. D. Morgenthaler.Static Analysis for a Software Transfor-
mation Tool. PhD thesis, UCSD, 1997.

[11] J. Overbey and R. Johnson. Differential precondition check-
ing: A lightweight, reusable analysis for refactoring tools. In
ASE, pages 303–312, 2011.

[12] J. Overbey and A. Lewis. OpenRefactory protocol spec-
i�cation. http://www.openrefactory.org/doc/dev/
protocol.pdf , 2013.

[13] J. L. Overbey and R. E. Johnson. Generating rewritable
abstract syntax trees. InSLE, Volume 5452 ofLNCS, pages
114–133, 2008.

[14] Photran – An Integrated Development Environment and
Refactoring Tool for Fortran.http://www.eclipse.org/
photran/ .



[15] M. Scḧafer, T. Ekman, and O. de Moor. Sound and extensible
renaming for Java. InOOPSLA, pages 277–294, 2008.

[16] C. K. Shanbhag.The Design of a User Interface for a Refac-
toring Tool for C. Master's thesis, UIUC, 2003.


