
Differential Precondition Checking:
A Language-Independent, Reusable Analysis for

Refactoring Engines

Jeffrey L. Overbey†, Ralph E. Johnson‡, and Munawar Hafiz†

†Department of Computer Science and Software Engineering
Auburn University

{joverbey,munawar}@auburn.edu

‡Department of Computer Science
University of Illinois at Urbana-Champaign

johnson@cs.illinois.edu

Abstract

One of the most difficult parts of building automated refactorings is en-
suring that they preserve behavior. This paper proposes a new technique
to check for behavior preservation; we call this technique differential pre-
condition checking. It is simple yet expressive enough to implement the
most common refactorings, and the core algorithm runs in linear time.
However, the main advantage is that a differential precondition checker
can be placed in a library and reused in refactoring tools for many dif-
ferent languages; the core algorithm can be implemented in a way that
is completely language independent. We have implemented a differential
precondition checker and used it in refactoring tools for Fortran (Photran),
PHP, and BC.

1 Introduction

What makes writing a new refactoring tool hard? What are the parts of such
a tool? One part is the user interface; refactoring is interactive and requires a
good UI. But IDEs like Eclipse provide a good framework for building a UI for a
refactoring tool, and most of the UI for a new refactoring tool can be reused from
other tools. Another part is the parser and the general language infrastructure.
People have tried to reuse the infrastructure from compilers and other tools with
mixed results, but our previous work [9] shows that it is possible to generate an
infrastructure that is perfectly suited for refactoring, so this is a solved research
problem, too. The remaining parts are the refactorings themselves. Automated
refactorings have two parts: the transformation—the change made to the user’s
source code—and a set of preconditions which ensure that the transformation
will produce a program that compiles and executes with the same behavior
as the original program. Authors of refactoring tools agree that precondition
checking is much harder than writing the program transformations.

This paper shows how to construct a reusable, generic precondition checker
which can be placed in a library and reused in refactoring tools for many differ-

1

ent languages. This makes it easier to implement a refactoring tool for a new
language.

We call our technique for checking preconditions differential precondition
checking. A differential precondition checker builds a semantic model of the pro-
gram prior to transformation, simulates the transformation, performs semantic
checks on the modified program, computes a semantic model of the modified
program, and then looks for differences between the two semantic models. The
refactoring indicates what differences are expected; if the actual differences in
the semantic models are all expected, then the transformation is considered to
be behavior preserving. The changes are applied to the user’s code only after
the differential precondition checker has determined that the transformation is
behavior preserving.

Our technique has several advantages. It is simple, practical, and minimalis-
tic. It does not guarantee soundness, and it is not a general method for testing
program equivalence. Rather, it is designed to be straightforward, fast, scalable,
and just expressive enough to implement preconditions for the most common
refactorings. Most importantly, the core algorithm can be implemented in a
way that is completely language independent, so it can be optimized, placed in
a library, and reused in refactoring tools for many different languages.

To evaluate our approach, we implemented 18 refactorings that used dif-
ferential precondition checking: 7 for Fortran, 9 for BC, and 2 for PHP. The
differential precondition checker is language-independent and was reused among
the three refactoring engines. We verified the Fortran refactorings by comparing
them with the traditional implementations using the unit tests for the traditional
implementations. We could not find comparable refactoring tools for PHP and
BC; we tested the new refactorings by porting some relevant unit tests from
other languages, including two refactoring benchmarks [10, 11]. We profiled the
Rename refactoring on Fortran programs and identified that the main source of
overhead is the amount of time taken for the front end to analyze the modified
program and recompute the name bindings.

This paper makes five contributions. (Relevant section numbers are noted
parenthetically.)

1. It characterizes preconditions as guaranteeing input validity, compilability,
and preservation (§3).

2. It introduces the concept of differential precondition checking (§3) and
shows how it can simplify precondition checking by eliminating compil-
ability and preservation preconditions (§5).

3. It observes that semantic relationships between the modified and unmod-
ified parts of the program tend to be the most important and, based on
this observation, proposes a very concise method for refactorings to specify
their preservation requirements (§5).

4. It describes how the main component of a differential precondition checker
(called a preservation analysis) can be implemented in a way that is both
fast and language independent (§7).

2

5. It provides an evaluation of the technique (§8), considering its successful
application to 18 refactorings and its implementation in refactoring tools
for Fortran (Photran), PHP, and BC.

This work was originally introduced in ASE ’11 [8]. The present article ex-
tends that work in three ways: (1) it provides a complete, formal description
of the differential precondition checking algorithm (§7.2), (2) performance ex-
periments were conducted on updated hardware with a slightly more optimized
implementation (§8.2), and (3) it offers a more complete discussion of trade-offs
and implementation issues (§§5.7, 9), based on two years of additional experi-
ence using the technique.

2 Precondition Checking

In most tools, each refactoring has its own set of preconditions. These are
tested first, and the transformation proceeds only if they pass. Unfortunately,
designing a sufficient set of preconditions for a new refactoring is extremely dif-
ficult. The author of the refactoring must exhaustively consider every feature
in the target language and somehow guarantee that the transformation is inca-
pable of producing an error. Consider Java: Even a “simple” refactoring like
Rename must consider naming conflicts, namespaces, qualifiers, shadowing, re-
served words, inheritance, overriding, overloading, constructors, visibility, inner
classes, reflection, externally-visible names, and “special” names such as main.

One promising alternative to traditional precondition checking is to analyze
the program after it has been transformed, comparing it to the original program
to determine whether or not the transformation preserved behavior. This has
been used for some dependence-based compiler transformations (e.g., a fusion
preventing dependence [4, p. 258] is most easily detected after transformation),
but researchers have applied it to refactoring tools only recently. Although this
technique is not yet used in any commercial tools, research indicates that it
tends to make automated refactorings simpler and more robust [13].

So, how can a refactoring tool analyze a program after transformation?
Refactorings preserve certain relationships in the source program. The Rename
refactoring preserves a name binding relationship: It ensures that every identi-
fier refers to the “same” declaration before and after transformation. Extract
Method and Extract Local Variable preserve control flow and def-use chains at
the extraction site. As we will see later in this paper, Pull Up Method preserves
a name binding relationship, as well as a relationship between classes and meth-
ods they override. In our experience, the most common refactorings preserve
invariant relationships related to name bindings, inheritance, overriding, con-
trol flow, and def-use chains. Analyzing a program after transformation means
ensuring that these invariant relationships are preserved across the transforma-
tion.

Schäfer et al. have suggested one way to refactor using invariants like these.
To implement a Rename refactoring for Java, they stored the original name
bindings, changed names, then checked the resulting bindings, adding qualifiers

3

as necessary to guarantee that the name bindings would resolve identically after
the transformation was complete [15]. They used a similar approach to im-
plement Extract Method: They stored the original control flow, performed the
transformation, then added control flow constructs as necessary to restore the
original flow [16]. They have applied this approach to many other refactorings
as well [13, 14]. In short, their approach maintains invariants by construction—
i.e., while performing the transformation, the refactoring checks the invariant
and, if possible, adjusts its behavior to preserve it.

The approach taken in this paper is based on some of the same ideas as
that of Schäfer et al., but there is a substantial difference in how we perform
the preservation check. The main difference is that our technique, when imple-
mented appropriately, is language independent; the mechanism for specifying
preservation requirements and the algorithm for performing the preservation
analysis are the same, regardless of what refactoring is being checked and re-
gardless of what language is being refactored. This means that, unlike the
approach of Schäfer et al., our preservation analysis can be implemented in a
library and reused verbatim in refactoring tools for many different languages.

3 Differential Precondition Checking

Preconditions determine the conditions under which the program transforma-
tion will preserve behavior. Logically, this means that they guarantee three
properties:

1. Input validity. All input from the user is legal; it is possible to apply the
transformation to the given program with the given inputs.

2. Compilability. If the transformation is performed, the resulting program
will compile; it will meet all the syntactic and semantic requirements of
the target language.

3. Preservation. If the transformation is performed and the resulting pro-
gram is compiled and executed, it will exhibit the same runtime behavior
as the untransformed program.

Clearly, input validation needs to be performed before the program is trans-
formed, since it may not even be possible to perform a transformation if the user
provides invalid input. But compilability is actually easier to determine after
transformation; essentially, it means running the program through a compiler
front end. It turns out that preservation can often be checked a posteriori as
well.

When differential precondition checking is employed, refactorings proceed as
follows:

1. Analyze source code and produce a program representation.

2. Construct a semantic model, called the initial model.

3. Validate user input.

4

4. Simulate modifying source code, and construct a new program represen-
tation. Detect compilability errors, and if appropriate, abandon the refac-
toring.

5. Construct a semantic model from this new program representation. This
is the derivative model.

6. Perform a preservation analysis by comparing the derivative model with
the initial model.

7. If the preservation analysis succeeds, modify the user’s source code. Oth-
erwise, abandon the refactoring.

What distinguishes differential precondition checking is how it ensures com-
pilability and preservation. These topics will be discussed in detail in Sections 4
and 5, respectively. It ensures compilability by performing essentially the same
checks that a compiler front end would perform. It ensures behavior preservation
by building semantic models of the program before and after it is transformed.
The refactoring informs the differential precondition checker of what kinds of
semantic differences are expected; the checker ensures that the actual differences
in the semantic models are all expected differences—hence the name differential
precondition checking.1

Note that a differential precondition checker contrasts the program’s seman-
tic model after transformation with its semantic model before transformation.
This is different from program metamorphosis systems [12], which provide an
“expected” semantic model and then determine whether the transformed pro-
gram’s semantic model is equivalent to the expected model. As we will see in
§§5.4–5.6, the mechanism for specifying expected differences in a differential pre-
condition checker is fairly coarse-grained; it does not uniquely characterize the
semantics of a particular transformed program but rather identifies, in general,
how a refactoring is expected to affect programs’ semantics.

4 Checking Compilability

Checking for compilability means ensuring that the refactored program does not
contain any syntactic or semantic errors, i.e., that it is a legal program in the
target language. These errors would usually be detected by the compiler’s front
end. Typically, these check constraints like “no two local variables in the same
scope shall have the same name” and “a class shall not inherit from itself.”

When differential precondition checking is employed, these checks are per-
formed in Step 4 (above), and they are used in lieu of traditional precondition
checks. For example, a refactoring renaming a local variable A to B would not
explicitly test for a conflicting local variable named B; instead, it would simply
change the declaration of A to B, and, if this resulted in a conflict, it would be
detected by the compilability check.

1Why differential “precondition” checking? A refactoring takes user input I and uses it to
determine a program transformation T (I). However, a precondition for the application of T (I)
to the user’s source code is that it satisfies the properties of compilability and preservation.

5

In fact, most refactoring tools already contain most of the infrastructure
needed to check for compilability. It is virtually impossible to perform any
complicated refactorings without a parser, abstract syntax tree (AST), and
name binding information (symbol tables). A type checker is usually needed
to resolve name bindings for members of record types, as well as for refactorings
like Extract Local Variable. So, refactoring tools generally contain (most of) a
compiler front end. Steps 1 and 4 (above) involve running source code through
this front end. So checking for compilability in Step 4 is natural.

The literature contains fairly compelling evidence for including a compilabil-
ity check in a refactoring tool. Compilability checking subsumes some highly
nontrivial preconditions—preconditions that developers have “missed” in tradi-
tional refactoring implementations. Verbaere et al. [17] identify a bug in several
tools’ Extract Method refactorings in which the extracted method may return
the value of a variable which has not been assigned—a problem which will be
identified by a compilability check. Schäfer et al. [15] describe a bug in Eclipse
JDT’s Rename refactoring which amounts to a failure to preserve name bind-
ings. Daniel et al. [1] reported 21 bugs on Eclipse JDT and 24 on NetBeans. Of
the 21 Eclipse bugs, 19 would have been caught by a compilability check. Seven
of these identified missing preconditions;2 the others were actually errors in the
transformation that manifested as compilation errors.

Compilability checking also serves as a sanity check. In the presence of a
buggy or incomplete transformation, it analyzes what the transformation ac-
tually did, not what it was supposed to do. If the code will not compile after
refactoring, the transformation almost certainly did something wrong, and the
user should be notified.

5 Checking Preservation

Compilability checking is important but simple. Checking for preservation is
more challenging. It involves choosing an appropriate semantic model and find-
ing a preservation analysis algorithm that balances speed, correctness, and gen-
erality. In this section, we will use a program graph as the semantic model. In
Section 7, we will use a slightly different semantic model based on the same
ideas.

In the remainder of this section, we will discuss what program graphs are (§5.1)
and how they can be used as an analysis representation for a refactoring tool (§5.2).
Then, we will discuss what preservation means in the context of a program
graph (§5.3) and how it can be used instead of traditional precondition checks,
using Safe Delete and Pull Up Method as examples (§§5.4–5.6).

5.1 Program Graphs

One program representation which has enjoyed success in the refactoring liter-
ature [5, 17] is called a program graph. A program graph “may be viewed, in

2Bugs 177636, 194996, 194997, 195002, 195004, 194005, and 195006

6

broad lines, as an abstract syntax tree augmented by extra edges” [5, p. 253].
These “extra edges”—which we will call semantic edges—represent semantic
information, such as name bindings, control flow, inheritance relationships, and
so forth. Alternatively, one might think of a program graph as an AST with
the graph structures of a control flow graph, du-chains, etc. superimposed; the
nodes of the AST serve as nodes of the various graph structures.

Class

 name: "Test2"

 body:

 (1) Field

 type: int

 name: "field"

 initialValue:

 IntConstant

 value: 0

 (2) Method

 returnType: void

 name: "fun"

 arguments: (none)

 body:

 (i) LocalVariable

 type: int

 name: "i"

 initialValue:

 IntConstant

 value: 0

 (ii) PostIncrement

 variable: "i"

 (iii) PostIncrement

 variable: "field"

 (iv) MethodInvocation

 name: "System.out.println"

 arguments:

 VariableAccess

 variable: "i"

b
in

d
in

g
b

in
d

in
g

b
in

d
in

g

c
o

n
tr

o
l
fl
o

w
c
o

n
tr

o
l
fl
o

w
c
o

n
tr

o
l
fl
o

w
c
o

n
tr

o
l
fl
o

w

d
e

f-
u

s
e

 (
1

)
d

e
f-

u
s
e

 (
2

)

class Test2 {

 int field = 0;

 void fun() {

 int i = 0;

 i++;

 field++;

 System.out.println(i);

 }

}

Figure 1: Example Java program and corresponding program graph

An example of a Java program and a plausible program graph representation
are shown in Figure 1. The underlying abstract syntax tree is shown in outline
form; the dotted lines are the extra edges that make the AST a program graph.
We have shown three types of edges. Name binding edges link the use of an
identifier to its corresponding declaration. Within the method body, control flow
edges form the (intraprocedural) control flow graph; the method declaration

7

node is used as the entry block and null as the exit block. Similarly, there are
two du-chains, given by def-use edges.

Program graphs are appealing because they summarize the “interesting” as-
pects of both the syntax and semantics of a program in a single representation,
obviating the need to maintain a mapping between several distinct representa-
tions. Moreover, they are defined abstractly: the definition of a program graph
does not state what types of semantic edges are included. A person designing a
program graph is free to include (or exclude) virtually any type of edge imagin-
able, depending on the language being refactored and needs of the refactorings
that will be implemented. For the 18 refactorings we considered (see §8), we
found five types of edges to be useful: name binding, control flow, def-use,
override edges (which link an overriding method to the overridden implementa-
tion in a superclass), and inheritance edges (which link a class to the concrete
methods it inherits from a superclass).

5.2 Program Graphs and AST Manipulation

In the end, refactoring tools manipulate source code. However, when building
a refactoring, it is helpful to think of manipulating the AST instead. Adding
a node means inserting source code. Replacing a node means replacing part of
the source code. And so on.

This does not change when a program graph is used in a refactoring tool.
A program graph is always derived from an AST. The content of the AST
determines what semantic edges will be superimposed. Semantic edges cannot
be manipulated directly; they can only change as a side effect of modifying the
AST.

In fact, that observation will serve as the basis of our preservation analysis.
When we modify an AST, we will indicate which semantic edges we expect to be
preserved and which ones we expect to change. Then, after the source code has
been modified, we will determine what semantic edges were actually preserved
and compare this with our expectations.

5.3 Preservation in Program Graphs

This raises a question: What does it mean for a semantic edge to be “preserved”
when an AST is modified?

We would like to say: If both the modified and unmodified ASTs contain an
edge with the same type and the same endpoints, that edge has been preserved.
Unfortunately, it is not clear what the “same” endpoints are, since the AST has
been modified, and the endpoints are AST nodes.

Consider a refactoring which replaces the expression x−x with the constant
0. When applied to the expression 3 + (x−x), this corresponds to the following
tree transformation.

8

+

−3

xx

+

03

When a subtree is changed (i.e., added, moved, removed, or replaced) in
an AST, we will call that the affected subtree. A gray triangle surrounds the
affected subtrees in the figure above. Using that figure as an example, consider
how AST nodes in the unmodified AST correspond with nodes in the modified
AST:

• There is an obvious correspondence between AST nodes outside the af-
fected subtrees, since those parts of the AST were unaffected by the trans-
formation.

• As a whole, the affected subtree before the transformation corresponds to
the affected subtree after the transformation.

• In general, there is no correspondence between nodes inside the affected
subtrees.

Recall that our goal is to determine if a semantic edge has the “same” end-
points before and after an AST transformation. This is easy if an endpoint is
outside the affected subtree, or if that endpoint is the affected subtree itself.
But if the endpoint is inside the affected subtree, we cannot determine exactly
which node it should correspond to. . . except that, if it corresponds to anything,
that node would be in the other affected subtree.

Since we cannot determine a correspondence between AST nodes inside the
affected subtree, we will collapse the affected subtrees into single nodes. This
makes the AST before transformation isomorphic to the AST after transforma-
tion.

collapsedcollapsed

+

3

+

3

Now, suppose we have superimposed semantic edges to form a program
graph. When we collapse the affected subtree to a single node, we will also need
to adjust the endpoints of the semantic edges accordingly:

• When an affected subtree is collapsed to a single node, if any semantic
edges have an endpoint inside the affected subtree, that endpoint will
instead point to the collapsed node.

Note, in particular, that if an edge has both endpoints inside the affected subtree,
it will become a self-loop on the collapsed node. Also, note that a program graph
is not a multigraph: If several edges have the same types and endpoints in the
collapsed graph, they will be merged into a single edge.

9

Collapsing the affected subtree in a program graph actually has a fairly
intuitive interpretation: If we replace one subtree with a different subtree that
supposedly does the same thing, then the new subtree should interface with
its surroundings in (mostly) the same way that the old subtree did. That is,
all of the edges that extended into the old subtree should also extend into the
new subtree, and all of the edges that emanated from the old subtree should
also emanate from the new subtree. There may be some differences within the
affected subtree, but the “interface” with the rest of the AST stays the same.

In some cases, we will find it helpful to replace one subtree with several sub-
trees (or, conversely, to replace several subtrees with one). For example, Encap-
sulate Variable removes a public variable, replacing it with a private variable, an
accessor method, and a mutator method. In other words, we are modifying sev-
eral subtrees at the same time. In these cases, we have an affected forest rather
than a single affected subtree. However, the preservation rule is essentially the
same: All of subtrees in the affected forest are collapsed into a single unit. So if
an edge extended into some part of the affected forest before transformation, it
should also extend into some part of the affected forest after transformation. In
the case of Encapsulate Variable, this correctly models the idea that every name
binding that pointed to the original (public) variable should, instead, point to
either the new (private) variable, the accessor method, or the mutator method.
(We will see an example of an affected forest when we discuss Pull Up Method
in §5.6.)

The reader should note that this method of preservation testing does not
necessarily guarantee soundness or completeness. We will discuss this further in
Section 9. A preservation analysis simply detects how a replacement will change
the semantic edges to and from an affected subtree (or forest). The designer
of the refactoring must take care to determine edge preservation requirements
that adequately model the conditions under which behavior will, in fact, be pre-
served. As an example, there would usually not be any semantic edges modeling
name bindings that occur due to reflection; however, Rename refactorings are
known to be unsound in the presence of reflection, so this is a “good enough”
approximation.

5.4 Specifying Preservation Requirements

Now that we have established how to determine whether a semantic edge has
been preserved across a transformation, we turn to a different question: How
can we express which semantic edges we expect to be preserved and which ones
we expect to change?

5.4.1 Edge Classifications

From the above description, we can see that whether we want to preserve an
edge depends on its type as well as its relationship to the affected subtree.
Therefore, it is helpful to classify every semantic edge as either internal (both
endpoints of the semantic edge occur within the affected subtree), external

10

(neither endpoint occurs within the affected subtree), incoming (the head of
the semantic edge is outside the affected subtree but the tail is inside it), or
outgoing (the head is inside the affected subtree and the tail is outside it).

5.4.2 Notation

Now, we can establish some notation. To indicate what edges we (do not) expect
to preserve, we must indicate three things:

1. The type(s) of edges to preserve. We will use the letters N , C, D, O, and
I to denote name binding, control flow, def-use, override, and inheritance
edges, respectively. (Note, however, that program graphs may contain
other types of edges as well, depending on the language being refactored
and the requirements of the refactorings being implemented.)

2. The classification(s) of edges to preserve. We will use ←, →, 	, and ×
to indicate incoming, outgoing, internal, and external edges, respectively.
We will use ↔ as a shorthand for describing both incoming and outgoing
edges.

3. Whether we expect the transformation to introduce additional edges or
remove existing edges. If additional edges may be introduced, we denote
this using the symbol ⊇ (i.e., the transformed program will contain a
superset of the original edges). If existing edges may be eliminated, we
denote this by⊆. If edges may be both added and removed, then we cannot
effectively test for preservation, so those edges will be ignored; we indicate
this using the symbol =? . Otherwise, we expect a 1–1 correspondence
between edges, i.e., edges should be preserved exactly. We indicate this
by =.

5.5 Example: Safe Delete (Fortran 95)

To make these ideas more concrete, let us first consider a Safe Delete refactoring
for Fortran which deletes an unreferenced internal subprogram.3

The traditional version of this refactoring has only one precondition: There
must be no references to the subprogram except for recursive references in its
definition.

What would the differential version look like? To determine its preservation
requirements, it is often useful to fill out a table like the following (note that
Fortran 95 is not object oriented and thus cannot have O- or I-edges):

N C D
← = = =
→ ⊆ = =
	 ⊆ ⊆ ⊆
× = = =

3A slightly more complete and much more detailed specification for this refactoring is given in
the technical report [7] described in the Evaluation section of this paper.

11

When a subprogram is deleted, all of the semantic edges inside the deleted
subroutine will, of course, disappear, and if the subprogram references any
names defined elsewhere (e.g., other subprograms), those edges will disappear.
Otherwise, no semantic edges should change.

Notating preservation requirements in tabular form is somewhat space-consuming,
since in practice most cells contain =. Therefore, we will use a more compact
notation. For each edge type, we will use subscripts to indicate which cells are
not =, i.e., what edges should not be preserved exactly. If all cells are =, we
will omit the subscript. Using this notation, the preservation requirements in
the above table would be notated N→⊆ 	

⊆C 	

⊆D 	

⊆.
Thus, we can describe the differential version of this refactoring in a single

step: Delete the subprogram definition, ensuring preservation according to the
rule N→⊆ 	

⊆C 	

⊆D 	

⊆.

5.6 Example: Pull Up Method (PHP 5)

For a more interesting example, let us consider a Pull Up Method refactoring
for PHP 5, which moves a concrete method definition from a class C into its
immediate superclass C ′.4 First, consider the traditional version.
Preconditions.

1. A method with the same name as M must not already exist in C ′. If M
were pulled up, there would be two methods with the same name, or M
would need to replace the existing method.

2. If there are any references to M (excluding recursive references inside M
itself), then M must not have private visibility. If it were moved up, its
visibility would need to be increased in order for these references to be
preserved.

3. M must not contain any references to the built-in constants self or
CLASS . If it were moved up, these would refer to C ′ instead of C.

(Note that PHP contains both self and $this: The former refers to the
enclosing class, while the latter refers to the this object.)

4. M must not contain any references to private members of C (except for M
itself, if it is private). Private members of C would no longer be accessible
to M if it were pulled up.

5. M must not contain any references to members of C for which there is
a similarly-named private member of C ′. These references would refer to
the private members of C ′ if the method were pulled up.

6. If M overrides another concrete method, no subclasses of C ′ may inherit
the overridden method. Pulling up M would cause these classes to inherit
the pulled up method instead.

7. The user should be warned if M overrides another concrete method. If
M were pulled up into C ′, then M would replace the method that C ′

inherited, changing the behavior of that method in objects of type C ′,

4Again, a more complete and detailed specification is available [7].

12

although the user might intend this since he explicitly chose to pull up M
into C ′.

Transformation. Move M from C to C ′, replacing all occurrences of parent in
M with self.

Now, consider the differential version. The transformation can be expressed
as the composition of two smaller refactorings:

1. Copy Up Method. Using preservation rule NO←⊇ 	

⊇I×⊆, copy the method
definition from C to C ′, replacing all occurrences of parent in M with
self.

2. Delete Overriding Duplicate. Remove the original method definition from
C, with rule NO 	

⊆I←⊇.

Pictorially, the process is as follows. The affected forests are highlighted in gray.

program

C' C

M

program

C' C

MM

overrides

program

C' C

M

Copy Up Del Dup

in
h
e
ri
ts

When the method is copied from C to C ′, an internal override edge will be
introduced, as may incoming override edges (if another class will override the
pulled up method), hence the rule O←⊇ 	

⊇. If the method being pulled up overrides
a method inherited from the immediate superclass, then an inheritance edge
will be lost, hence I×⊆. However, the new method in C ′ should not be inherited
by any subclasses, and all identifiers should bind to the same names they did
when the method was contained in C, so no other inheritance or name binding
edges are expected to change. Once we have established that no subclasses will
accidentally inherit the pulled up method, we can delete the original method
from C. This will remove the override edge introduced in the previous step, and
C will inherit the pulled up method, so the preservation rule is NO 	

⊆I←⊇.
Now, consider how the differential version of this refactoring satisfies all of

the traditional version’s preconditions. Precondition 1 would be caught by a
compilability check. Preconditions 2–5 are simply preserving name bindings.
A program that failed Precondition 6 would introduce an incoming inheritance
edge. If a program failed Precondition 7, an outgoing inheritance edge from C ′

would vanish.

5.7 On Composite Refactorings

For the differential version, we redefined Pull Up Method as the composition of
two smaller refactorings. Whenever this is possible, it is generally a good idea:

13

It allows preservation rules to be specified at a finer granularity; the smaller
refactorings are often useful in their own right; and, perhaps most importantly,
simpler refactorings are easier to implement, easier to test, and therefore more
likely to be correct. This has been suggested by other researchers as well [13,16].

However, composing large refactorings from smaller refactorings has one ma-
jor disadvantage: it can make error reporting difficult. As an example, we have
recently begun applying this technique in OpenRefactory/C, a refactoring tool
for C; due to various complications in the C language (notably, pointers), the
Extract Function refactoring is actually a composition of 11 smaller refactorings.
Of course, this is transparent to the user; it appears to be a single, monolithic
refactoring. If the preconditions do not pass for one of the intermediate steps,
it can be difficult to describe the error in a way that is comprehensible to the
end user, since the code is in neither its original form nor its fully refactored
form when the precondition failure occurs.

There are several ways to address this problem. One is to provide a custom
error handler for each step, which intercepts precondition failures and attempts
to display them in a user-friendly form specific to the refactoring. If the error
involves a construct in the original source code, the sequence of replacements
presented in Section 7.2 can be used to map the construct back to its location
in the original source code. Another option—which is not always possible—
is to simply let the refactoring continue. If it is known that the subsequent
refactoring steps will be able to complete, even in the presence of the error, and
the error will still exist in the final, refactored code, then it can be displayed to
the user at that point. (We have found that approach to be helpful anecdotally:
show what the refactored program would look like, along with error messages
pointing to the problematic lines of code.) Of course, a third (less appealing)
option is to add explicit precondition checks at the beginning of the composite
refactoring and then use the intermediate, differential precondition checks only
as a sanity check for the explicit preconditions.

6 The Preservation Analysis Algorithm

If one understands what a program graph is, and what the preservation rules
mean, the preservation analysis algorithm is straightforward. A program graph
becomes an abstract data type with

Sorts: ProgramGraph, Edge, Type
Operations:

getAllEdges : ProgramGraph → finite set of Edge
classify : Edge → {←,→,	,×}

type : Edge → Type
equiv : Edge × Edge → {true, false}.

The equiv operation determines whether two edges—one in the original pro-
gram graph and one in the transformed program graph—are equivalent, i.e.,
if the edge was preserved. For simplicity, we have left this underspecified, al-

14

though its intent should be clear from the previous section. Now, preservation
is determined by the following algorithm.

Input: P : ProgramGraph (Original program)
P ′ : ProgramGraph (Transformed program)
rule : Type × {←,→,	,×} → {=,⊆,⊇,=? }

Output: pass or fail

let E := getAllEdges(P)
let E′ := getAllEdges(P ′)
for each Edge e ∈ E

if rule(type(e), classify(e)) is ⊇ or =
but 6 ∃ e′ ∈ E′ s.t. equiv(e, e′) = true, then
fail

for each Edge e′ ∈ E′

if rule(type(e′), classify(e′)) is ⊆ or =
but 6 ∃ e ∈ E s.t. equiv(e, e′) = true, then
fail

otherwise, pass

In short, E consists of all of the semantic edges from the original program,
and E′ consists of all of the semantic edges from the transformed program. The
first for loop checks for edges in the original program that are missing from the
transformed program, failing if it finds one that should have been preserved but
was not. The second for loop checks for edges in the transformed program that
were not present in the original program, failing if if finds an edge that should
not have been introduced.

7 Analysis with Textual Intervals

7.1 Overview

The key to an efficient implementation is being able to determine, for a par-
ticular edge, whether an equivalent edge exists in the transformed program. If
this can be done in O(1) time, then the above algorithm’s execution time is
linear in the number of edges in the two program graphs. In this section, we
will sketch one way to do this (which also makes the implementation language
independent).

The ASTs in refactoring tools tend to model source code very closely. This
means that they tend to exhibit a very useful property: Every node in an
AST corresponds to a particular textual region of the source code, and this
textual region can be mapped back to a unique AST node. Consider the program
graph from Figure 1. The source code is 115 characters long. The Class AST
node corresponds to the entire source code—the characters at offsets 0 through
114, inclusive, or the interval [0, 114]. The field declaration int field = 0;

corresponds to the interval [14, 30]. The post-increment field++; becomes

15

Initial Model (a)
[74, 78] .N [14, 30]
[65, 65] .N [46, 60]

[106, 106] .N [46, 60]
[31, 113] .C [46, 60]
[46, 60] .C [61, 69]
[61, 69] .C [70, 82]
[70, 82] .C [83, 109]
[83, 109] .C [−1, −1]
[46, 60] .D [61, 69]
[61, 69] .D [106, 106]

Norm. Initial (b)
∗ .N ∗

[61, 61] .N [42, 56]

[98, 98] .N [42, 56]
[27, 105] .C [42, 56]
[42, 56] .C [57, 65]
[57, 65] .C ∗

∗ .C [75, 101]
[75, 101] .C [−1, −1]
[42, 56] .D [57, 65]
[57, 65] .D [98, 98]

Norm. Deriv. (c)

[61, 61] .N [42, 56]
∗ .N [42, 56]

[98, 98] .N [42, 56]
[27, 105] .C [42, 56]
[42, 56] .C [57, 65]
[57, 65] .C ∗

∗ .C [75, 101]
[75, 101] .C [−1, −1]
[42, 56] .D [57, 65]
[57, 65] .D [66, 74]

∗ .D [98, 98]

Deriv. Model (d)

[61, 61] .N [42, 56]
[70, 70] .N [42, 56]
[98, 98] .N [42, 56]
[27, 105] .C [42, 56]
[42, 56] .C [57, 65]
[57, 65] .C [66, 74]
[66, 74] .C [75, 101]
[75, 101] .C [−1, −1]
[42, 56] .D [57, 65]
[57, 65] .D [66, 74]
[66, 74] .D [98, 98]

Figure 2: Textual interval models of the program graph from Figure 1, when
field is renamed to i

[70, 82].
Since AST nodes can be represented as intervals, we can use these intervals

to describe the semantic edges of a program graph. For example, the name
binding edge from the post-increment to the field declaration becomes [70, 82].B
[14, 30]. (The interval representation of the program graph in Figure 1 is shown
in Figure 2(a).)

During a refactoring transformation, it is possible to track what regions of
the original source code are deleted or replaced, as well as where new source code
is inserted. These textual regions are contained in the affected forests. Since
we know exactly how many characters were added or deleted at what positions,
then for any character outside these regions, it is possible to determine exactly
where that character should occur in the transformed program. Suppose we
have a (partial) function newOffset(n) that can determine this value, for a given
character offset n in the original program.

Now, suppose we take each edge of the derivative model, and if an endpoint
is contained in the affected forest, we replace that interval with ∗. We will
call the result the normalized derivative model. Then, we can take each edge
of the initial program graph and use the newOffset function to determine the
equivalent edge in the normalized derivative model, likewise replacing endpoints
in the affected forest with ∗. We will call this the normalized initial model.

16

If the normalized models are stored as sets (eliminating duplicate edges),
then each edge in the initial model corresponds to exactly one edge in the
normalized initial model, and each edge in the derivative model corresponds to
exactly one edge in the normalized derivative model. Now, an edge in the initial
model is equivalent to an edge in the derivative model (in the notation of the
previous section, equiv(e, e′) if, and only if, their corresponding edges in the
normalized models are equal. By storing the edges of the normalized models in
appropriate data structures (e.g., hash sets), we can determine in O(1) time if
a particular edge occurs in either model.

An example is shown in Figure 2. Suppose, in the Java program in Figure 1,
we attempt to rename the field declaration from field to i. The transformation
is simple: replace the five characters field at offsets 20–24 (the declaration)
and 74–78 (the reference) with the one-character string i. Since four characters
are deleted in each case,

newOffset(n) =

n if n ≤ 19

n− 4 if 25 ≤ n ≤ 73

n− 8 if 79 ≤ n.

The affected forest consists of the field declaration and the second post-increment
(initial intervals [14, 30] and [70, 82], derivative intervals [14, 26] and [66, 74]).
Since field++ changes to i++, the name binding edge for the field reference dis-
appears and becomes a reference to the local variable i in the derivative model.
Also, a new def-use chain is introduced. Since the renaming transformation
would not preserve name bindings (or du-chains, for that matter), it should not
be allowed to proceed.

Implementing the preservation analysis using textual intervals, rather than
directly on the program graph, has a number of advantages. It allows the
preservation analysis to be highly decoupled from the refactoring tool’s program
representation, which makes it more easily reusable. It is fairly space-efficient,
since semantic edges are represented as tuples of integers. Also, there is a fairly
natural way to display errors: highlight the affected region(s) of the source code.

7.2 Detailed Construction

We will now turn to the details of implementing a textual interval-based preser-
vation analysis. (Readers uninterested in these details may skip ahead to Sec-
tion 8.)

We begin with some preliminary definitions. We will denote textual regions
using right half-open integer intervals. Using half-open intervals allows for many
different empty intervals; e.g., [3, 3) denotes an empty interval at position 3,
while [5, 5) denotes an empty interval at position 5. This will become important
momentarily when we introduce replacements.

Definition 1. A right half-open interval over Z (or simply “interval”) is
an ordered pair denoted

I = [I, I),

17

where I, I ∈ Z and I ≤ I. I is called the lower bound of I, and I is called the
upper bound of I. The set of all such intervals will be denoted IZ. An interval
[I, I) intuitively corresponds to the set [[I M := {I, I + 1, . . . , I − 1}, so we will
adopt the following notations from set theory. Let n ∈ Z.

• n ∈ I denotes I ≤ n < I.

• I ⊆ J denotes J ≤ I ≤ I ≤ J .

• I ⊂ J denotes I ⊆ J ∧ I 6= J .

• | I | denotes max(I − I, 0).

• I ∩ J denotes the set {max(I, J),max(I, J) + 1, . . . ,min(I − 1, J − 1)}.

(Note that I ∩ J = ∅ if I and J do not overlap.)
As stated earlier, a textual interval model requires that every node in an

AST be mapped to a unique textual region of the source code, and that this
textual region be mapped back to a unique AST node. Formally, this means that
there must be a textual mapping defined on the tree, as follows.5

Definition 2. For a directed tree T with vertex set V , a textual mapping

rgn : V
1–1−−→ IZ

is an injective (1–1) function with the following properties, for v, u ∈ V .

1. If u is a descendent of v in T , then rgn(u) ⊂ rgn(v).

2. If u is a sibling of v in T , then rgn(u) ∩ rgn(v) = ∅.

7.2.1 Predicting Offsets

When the AST is modified during a refactoring transformation, the modified
subtrees of the AST comprise the affected forest. The textual mapping allows
these modified subtrees to be mapped to textual regions. So, it is possible to
track what regions of the original source code are deleted or replaced, as well
as where new source code is inserted, based on the changes made to the AST.

In the author’s implementation, this is accomplished using the Observer
pattern [3]: The preservation analysis registers an observer on the relevant
AST(s), so it can be informed when AST nodes are added, modified, or deleted.
The observer uses the textual mapping to map the changed part(s) of the AST
to textual regions.

In a textual interval-based analysis, the changes made to the source code are
represented as a set of nonoverlapping replacements. Each replacement describes
an AST node (equivalently, a region of source code) that was added, deleted, or
modified.

Definition 3. A replacement is an ordered pair denoted by J//K, where
J,K ∈ IZ and J = K. We will let R denote the set of all replacements.

5Actually, in practice, the requirement is not so strict: Two tree nodes can correspond
to the same textual region as long as only one of them can ever occur as the endpoint of a
semantic edge in a program graph.

18

For example, the string “System.out.println("Hi");” can be transformed
into the string “println (MESSAGE);” using three replacements, as shown be-
low.

System.out.println("Hi");

println (MESSAGE);

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
 1 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
 1

delete

[0,11) // [0,0)
replace with

MESSAGE

[19,23) // [19,26)

insert space

[18,18) // [18,19)

Definition 4. A set S ⊆ R of replacements is nonoverlapping iff⋂
J//K∈S

J = ∅.

Determining whether two intervals overlap is quite simple, due to the fol-
lowing theorem, which is proved easily.

Theorem 1. (Efficient Computation of Interval Overlap)
Given I, J ∈ IZ,

[[I M ∩ [[J M = ∅ iff (I ≤ J ∨ I ≥ J).

Since we know exactly how many characters were added or deleted at what
positions, then for any character outside these regions, it is possible to determine
exactly where that character should occur in the transformed program.

Definition 5. Given n ∈ Z and a set S of nonoverlapping replacements, the
new offset of n (according to S) is given by the function

newOffsetS(n) := n +
∑

J//K∈S

adjustJ//K(n)

where

adjustJ//K(n) :=

{
0 if n < J

|K| − |J | if n ≥ J.

Intuitively, any single replacement J//K inserts |K|−|J | characters, so all of the
characters after the affected interval will be shifted by that many characters.
The summation simply computes the total amount by which n will be adjusted
after every replacement has been applied. In the example above, the final semi-
colon was at offset 24 in the original string and offset 17 in the modified string.
This is predicted by the newOffset function as follows. The set S consists of
three nonoverlapping replacements:

S := { [0, 11)//[0, 0), [18, 18)//[18, 19), [19, 23)//[19, 26) } .

19

Then, we have

adjust[0,11)//[0,0) = −11

adjust[18,18)//[18,19) = 1

adjust[19,23)//[19,26) = 3∑
J//K∈S

adjustJ//K(24) = −7

newOffsetS(24) = 24 +−7 = 17.

7.2.2 Interval Models

Thus far, we have seen that a textual mapping is used to map between AST
nodes and textual intervals; the affected forest can be represented as a set of
nonoverlapping replacements; and the newOffset function can determine, for
any character occurring outside the affected forest, where that character will
be located in the transformed program. Now, we will show how to construct
semantic models based on these results.

Since an interval uniquely determines an AST node, a semantic edge in
the AST can be represented as an ordered triple consisting of (1) the interval
corresponding to the head AST node, (2) the edge type, and (3) the interval
corresponding to the tail AST node. An interval model, then, is simply the set
of all semantic edges in a program graph.

Definition 6. Given a set ΣE of edge types, an interval model is a finite
subset of IZ×ΣE × IZ. The members of this set are called (semantic) edges.
An edge (I, `, J) will be denoted by I .` J .

The initial model is the interval model constructed from the original source
code, and the derivative model is the interval model constructed from the
modified source code. To check for preservation, we must construct normalized
initial and derivative models. This means that we must be able to determine
whether an endpoint of an edge lies within the affected forest so that we can
replace that endpoint with ∗.

Recall that the affected forest is denoted by a set of nonoverlapping replace-
ments. For a replacement J//K, the interval J describes the offsets within the
original source code that are affected.

Definition 7. The affected initial interval of a replacement J//K is given
by

aii(J//K) := J.

Now, we can determine what part(s) of the modified source code lie within
the affected forest using the newOffset function.

Definition 8. Let S be a set of nonoverlapping replacements. The affected
derivative interval of a replacement J//K ∈ S is given by

adiS(J//K) :=
[
newOffsetS−{J//K}(K),newOffsetS−{J//K}(K) + |K|

)
.

20

We can collapse the edges in the derivative model to construct the normalized
derivative model.

Definition 9. Given a set S of nonoverlapping replacements and an interval
model D (the derivative model), the normalized derivative model is the
interval model

dnormS(D) := {collapseS(I) .t collapseS(J) | I .t J ∈ D}

where

collapseS(I) :=

∗ if ∃r ∈ S. I ⊆ adiS(r)

I otherwise.

Constructing the normalized initial model is slightly more difficult. We
know what regions of the original source code (and, thus, what AST nodes)
lie within the affected forest, and for any character outside these regions, we
have a function to determine exactly where that character should occur in the
transformed program. So, for any interval in the original program, we can
predict what the equivalent interval will be in the normalized derivative model:
If it lies within the affected forest, it will be ∗; otherwise, we can determine the
exact bounds using the newOffset function.

Definition 10. Given a set S of nonoverlapping replacements and an interval
model I (the initial model), the normalized initial model is the interval model

inormS(I) := {predictS(I) .t predictS(J) | I .t J ∈ D}.

where

predictS(I) :=

∗ if ∃J//K ∈ S. I ⊆ aii(J//K)[
newOffsetS(I),newOffsetS(I − 1) + 1

)
otherwise.

Perhaps the most surprising part of the above definition is the presence of
· · ·−1)+1. This ensures that, if I is the start of the affected derivative interval,
it is kept alone and not extended to the right side of the interval. For example,
suppose a statement S covers offsets 10–20, inclusive; this would be represented
by the interval [10, 21). If a new statement is inserted after S, this should
not change S’s textual interval; it should still be [10, 21). However, suppose
S (and the new statement) are contained in a compound statement covering
the interval [9, 22). Then the addition of the new statement should change the
textual interval for the compound statement, since the new statement was added
to it.

7.2.3 Performing the Preservation Analysis

Once the normalized initial and derivative models have been constructed ac-
cording to the above definitions, the preservation analysis is a straightforward

21

implementation of the algorithm from Section 6. Let E denote the normalized
initial model (i.e., a set of ordered triples as defined in Definition 10) and E′

the normalized derivative model (Definition 9). Define

type(v .t u) := t

classify(v .` u) :=

← if v 6= ∗ ∧ u = ∗
→ if v = ∗ ∧ u 6= ∗
	 if v = ∗ ∧ u = ∗
× if v 6= ∗ ∧ u 6= ∗.

Then the preservation analysis exactly follows the pseudocode given in Section 6.

7.2.4 Summary

In sum, a differential precondition checker based on interval models operates as
follows.

1. Analyze source code and produce an AST.

2. Construct the initial model I from the AST, performing any requisite
static analyses.

3. Validate user input.

4. Perform the transformation, recording the AST changes as a set of nonover-
lapping replacements S.

5. Detect compilability errors, and if appropriate, abandon the refactoring.

6. Construct the derivative model D from an AST for the modified source
code, again performing any requisite static analyses.

7. Construct the normalized initial model inormS(I) and the normalized
derivative model dnormS(D).

8. Apply the preservation analysis algorithm as described in Section 6.

9. If the preservation analysis succeeds, modify the user’s source code. Oth-
erwise, abandon the refactoring.

8 Evaluation

In previous sections, we illustrated differential precondition checking using Safe
Delete, Pull Up Method, and Rename as illustrative examples. We also sketched
a linear-time algorithm for performing the preservation analysis and argued for
its language independence. But is this technique effective in practice? We will
focus on two questions:

Q1. Expressivity. Are the preservation specifications in §3 sufficient to imple-
ment the most common automated refactorings?

Q2. Performance. When preconditions are checked differentially, what are
the performance bottlenecks? How does the performance compare to a
traditional implementation?

22

For our evaluation, we implemented a differential precondition checker which
we reused in three refactoring tools: (1) Photran, a popular Eclipse-based IDE
and refactoring tool for Fortran; (2) a prototype refactoring tool for PHP 5; and
(3) a similar prototype for BC.

8.1 Q1: Expressivity

To effectively answer question Q1, we must first identify what the most com-
mon automated refactorings are. The best empirical data so far are reported by
Murphy-Hill et al. [6]. Table 1 shows several of the top refactorings; the Eclipse
JDT column shows the popularity of each refactoring in the Eclipse JDT ac-
cording to [6, Table 1, “Everyone”]. For comparison, we have also listed the
availability of these refactorings in other popular refactoring tools for various
languages.

Table 1: Automated refactorings in popular tools (as reported in [8]).

Refactoring E
cl
ip
se

J
D
T

(R
a
n
k
)

In
te
lli
J
ID

E
A
1

In
te
lli
J
R
eS

h
ar
p
er

2

M
S
V
is
u
a
l
S
tu
d
io

3

E
cl
ip
se

C
D
T

V
is
u
a
l
A
ss
is
t
X
4

A
p
p
le

X
co

d
e5

Z
en

d
S
tu
d
io

6
Rename 1 • • • • • • •
Extract Variable 2 • • ◦ • ◦ ◦ •
Move 3 • • ◦ ◦ ◦ ◦ •
Extract Method 4 • • • • • • •
Change Signature 5 • • • ◦ • ◦ ◦
Pull Up Method 11 • • ◦ ◦ • • ◦

Legend: • Included ◦ Not Included
1 http://www.jetbrains.com/idea/features/refactoring.html
2 http://www.jetbrains.com/resharper/features/code refactoring.html
3 http://msdn.microsoft.com/en-us/library/719exd8s.aspx
4 http://www.wholetomato.com/products/featureRefactoring.asp
5 http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/

XcodeWorkspace/150-Refactoring/refactoring.html
6 http://www.zend.com/en/products/studio/features#refactor

We selected 18 refactorings (see Table 2): 7 for Fortran, 9 for BC, and 2
for PHP. Five of these refactorings are Fortran or BC analogs of the five most
frequently-used in Eclipse JDT. Nine others are support refactorings, necessi-
tated by decomposition. The remaining refactorings were chosen for other rea-
sons. Add Empty Subprogram and Safe Delete were the first to be implemented;
they helped shape and test our implementation. Introduce Implicit None pre-
serves name bindings in an “interesting” way. Pull Up Method required us to
model method overriding and other class hierarchy issues in program graphs.

It is worth noting that many popular IDEs provide fewer than 10 refactor-
ings, including Apple Xcode (8 refactorings), Microsoft Visual Studio (6), and
Zend Studio (4). So while generality is important and desirable (certainly, a

23

Table 2: Refactorings evaluated (as reported in [8]).

1. Rename

2. Move

3. Introduce USE

4. Change Function Signature

5. Introduce IMPLICIT NONE

6. Add Empty Subprogram

7. Safe Delete

8. Pull Up Method

9. Copy Up Method

10. Extract Local Variable

11. Add Local Variable

12. Introduce Block

13. Insert Assignment

14. Move Expression

15. Extract Function

16. Add Empty Function

17. Populate Function

18. Replace Expression

F
o
r
tr
a
n

P
H
P

B
C

technique that works for 18 refactorings will apply to many others), expedit-
ing and improving the implementation of a few common refactorings is equally
important, perhaps more so.

We wrote detailed specifications of all 18 refactorings in a technical report [7].
Each specification describes both the traditional and the differential version of
the refactoring, both at a level of detail sufficient to serve as a basis for imple-
mentation. (Several undergraduate interns working on Photran implemented
refactorings based on our specifications.) The style of the specifications is simi-
lar to the Pull Up Method example from §3 but more precise. For example, the
Fortran refactoring specifications use the same terminology as the Fortran 95
ISO standard.

We divided refactorings among the three languages as follows. For all of
the refactorings that rely primarily on name binding preservation, we targeted
Fortran, since it has the most complicated name binding rules. We targeted
flow-based refactorings for BC: It contains functions, scalar and array variables,
and all of the usual control flow constructs, but it is a much smaller and simpler
language than either Fortran or PHP. This kept the specifications of these
(usually complex) refactorings to a manageable size without sacrificing any of
the essential preconditions. The one object-oriented refactoring targeted PHP 5.

We implemented a differential precondition checker (following §7) and used
it to implement differential refactorings in the three refactoring tools, following
our detailed specifications. For BC and PHP, we implemented refactorings as
listed in Table 2. Since there are no comparable refactoring tools for these lan-
guages, we could not perform differential testing. However, we ported several
relevant unit tests from the Eclipse CDT and JDT, as well as two informal refac-
toring benchmarks [10,11]. For Fortran, we implemented differential versions of
Rename, Introduce Implicit None, Add Empty Subprogram, and Safe Delete.
Photran included traditional versions of these refactorings, with fairly extensive
unit tests, so we were able to reuse the existing test cases to test the differential
implementations.

24

Figure 3: Rename performance profile

8.2 Q2: Performance

Since a differential precondition checker’s performance depends on the speed of
the language-specific front end, as well what refactoring is being performed and
what program is being refactored, it is difficult to make any broad claims about
performance. In our experience, when a refactoring affects only one or two files
in a typical application, the amount of time devoted to precondition checking
is negligible. Most of the refactorings we implemented fall into this category.
Performance becomes a concern only at scale, e.g., when a refactoring potentially
affects every file in a project. We will use Photran’s Rename refactoring as
an illustrative example. Rename is the most expensive of the refactorings we
implemented, since it can potentially change name bindings in every file in the
program, it often makes many changes to a single file, and computing name
bindings involves accessing a index/cross-reference database.

Figure 3 shows a performance profile6 for the Rename refactoring on three
Fortran programs. Two are examples intended to test scalability: “1 File” is a
project with 500 subroutine definitions in a single file, while “500 Files” contains
1 subroutine in each of 500 files. “WindFunction” shows the results of renaming
of the wind function in an atmospheric dispersion simulation (a production
Fortran program consisting of about 53,000 LOC in 29 files, four of which were
ultimately affected by the refactoring). From left to right, the performance
measurements represent creation of the initial interval model, normalization of
this model, running the front end to re-analyze the modified code, construction
of the derivative interval model, normalization of this model, and, finally, the
preservation analysis.

These performance tests were previously performed for the conference ver-
sion of this work [8]. While the times reported in Figure 3 are slighly better, due

6The tests were performed on a 2.3 GHz Intel Core i7 (MacBook Pro), Java 1.6.0 51, with
the JVM heap limited to 512 MB.

25

to better hardware and a slightly more optimized implementation, the overall
performance profile remains the same.

Note the logarithmic scale on the y-axis: In all three cases, the perfor-
mance bottleneck was, by far, the Re-analyze measurement—i.e., the amount
of time taken for the front end to analyze the modified program and recompute
name bindings. This was generally true for other refactorings as well. It is
not particularly surprising: When an identifier in one file can refer to an entity
in another file, computing name bindings involves populating and accessing a
cross-reference database.

9 Limitations

Our preservation analysis has three notable limitations.
First, it assumes that, if a replacement subtree interfaces with the rest of

the AST in an expected way, it is a valid substitute for the original subtree.
It is the refactoring developer’s responsibility to ensure that this assumption is
appropriate. For example, replacing every instance of the constant 0 with the
constant 1 would almost certainly break a program, but our analysis would not
detect any problem, since this change would not affect any edges in a typical
program graph. However, the refactoring developer should recognize that name
bindings, control flow, and du-chains do not model the conditions under which
1 and 0 are interchangeable values.

Second, for our preservation analysis to be effective, the “behavior” to pre-
serve must be modeled by the program graph. There are several cases where
this is unlikely to be true, including the following.

Interprocedural data flow. One particularly insidious example is illustrated
by an Eclipse bug (186253) reported by Daniel et al. [1]. In this bug, Encap-
sulate Field reorders the fields in a class declaration, causing one field to be
initialized incorrectly by accessing the value of an uninitialized field via an ac-
cessor method. In theory, this could be detected by a preservation analysis, as
it is essentially a failure to preserve du-chains for fields among their initializers.
Unfortunately, these would probably not be modeled in a program graph, since
doing so would require an interprocedural analysis.

Library replacements, such as replacing primitive int values with (synchro-
nized) AtomicInteger objects in Java [2], or converting programs to use the
ArrayList class instead of Vector. Program graphs generally model language
semantics, not library semantics, and therefore are incapable of expressing the
invariants that these refactorings maintain.

Complex transformations whose correctness cannot be expressed by syntac-
tic invariants. These include transformations such as loop unrolling, convert-
ing programs with goto statements to structured programs, and converting
programs to static single-assignment form. The preservation specifications de-
scribed in this paper are only intended to express simple, syntactic relationships
in the source code.

This is actually a limitation by design: the types of preservation requirements

26

that can be specified using the rules described earlier is intentionally limited,
due to the fact that our technique collapses the entire affected forest into a
single unit in the program graph. This was done because (1) we found it to be
effective in the common case, as noted in the Evaluation (§8), and (2) it kept
the language for specifying preservation requirements relatively simple.

One obvious modification to our approach would allow different subtrees in
the affected forest to be distinguished. For example, in the Copy Up Method
refactoring for PHP (described earlier), we collapsed the original method and
the copy into a single affected forest, replacing endpoints of semantic edges in
either subtree with ∗. Instead, we could distinguish between the original method
(collapsing those endpoints to ∗1) and the copy (collapsing to ∗2). Then, there
would be several more edge classifications, including four different internal edge
classifications (internal to ∗1, internal to ∗2, edges from ∗1 to ∗2, and edges from
∗2 to ∗1). While such modifications provide a much finer level of granularity
for specifying preservation requirements, they do complicate the language for
specifying these requirements—sometimes significantly. It can quickly devolve
into (essentially) a language for specifying graph rewriting rules, which have
their own subtleties and complications [5]. In our experience, by aggressively
decomposing complex refactorings into sequences of smaller refactorings, we
have generally found such changes to be unnecessary for the types of refactorings
most commonly implemented in refactoring tools.

10 Conclusions & Future Work

In this paper, we classified refactoring preconditions as ensuring input valid-
ity, compilability, and behavior preservation, and we proposed a technique for
many compilability and preservation preconditions to be checked after trans-
formation in a generic way. We showed that, if essential semantic relationships
are treated as edges in a program graph, these edges can be classified based
on their relationship to the modified subtree(s). The preservation requirements
for common refactorings can be expressed by indicating, for each kind of edge,
whether a subset or superset of those edges should be preserved. By exploiting
an isomorphism between graph nodes and textual intervals, the preservation
checking algorithm can be implemented in a way that is both efficient and lan-
guage independent. We implemented this technique in a library and applied it
to refactorings for Fortran 95, PHP 5, and BC.

Much future work is possible. When differential precondition checking is
used, how does it affect the amount of time taken to implement a refactor-
ing? Do refactorings implemented with differential precondition checking tend
to have more or fewer bugs than those implemented with traditional precon-
dition checks? Both of these questions will require empirical data from many
developers to answer conclusively. What other refactorings can be implemented
using the preservation specifications described in this paper? Can a program
graph representation be extended to overcome the limitations outlined in the
previous section? Can it model C preprocessor directives? Is it useful to extend

27

a differential precondition checker with expensive interprocedural analyses for
the purposes of testing but to replace these analyses with cheaper, traditional
precondition checks in production? We hope that researchers will address these
and other questions about differential precondition checking in the future.

Acknowledgment

This research is part of the Blue Waters sustained-petascale computing project,
which is supported by the National Science Foundation (award number OCI 07-
25070) and the state of Illinois. Blue Waters is a joint effort of the University
of Illinois at Urbana-Champaign, its National Center for Supercomputing Ap-
plications, IBM, and the Great Lakes Consortium for Petascale Computation.
Additionally, portions of this research were supported by the National Science
Foundation under award CCF-1217271. The authors would like to thank the
anonymous reviewers, as well as Rob Bocchino, John Brant, Brett Daniel, Danny
Dig, Matthew Fotzler, Milos Gligoric, Vilas Jagannath, Ashley Kasza, Darko
Marinov, Stas Negara, and members of the Brett Daniel Software Engineering
Seminar for providing invaluable feedback on earlier drafts of this paper.

References

[1] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated
testing of refactoring engines. In FSE ’07.

[2] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential
Java code for concurrency via concurrent libraries. In ICSE ’09, pages
397–407, 2009.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, Massachusetts, January 1995.

[4] Ken Kennedy and John R. Allen. Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann, San Francisco,
2002.

[5] Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. For-
malizing refactorings with graph transformations. J. Softw. Maint. Evol.,
17(4):247–276, 2005.

[6] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refac-
tor, and how we know it. In ICSE ’09.

[7] Jeffrey L. Overbey, Matthew J. Fotzler, Ashley J. Kasza, and Ralph E.
Johnson. A collection of refactoring specifications for Fortran 95, BC, and
PHP 5. Technical Report http://jeff.over.bz/papers/2011/tr-refacs.pdf,
2011.

28

[8] Jeffrey L. Overbey and Ralph E. Johnson. Differential precondition check-
ing: A lightweight, reusable analysis for refactoring tools. In ASE ’11.

[9] Jeffrey L. Overbey and Ralph E. Johnson. Generating rewritable abstract
syntax trees. In SLE 2008, volume 5452 of LNCS, pages 114–133.

[10] Refactoring benchmarks for extract method. http://c2.com/cgi/wiki?

RefactoringBenchmarksForExtractMethod.

[11] Refactoring benchmarks for pull up method. http://c2.com/cgi/wiki?

RefactoringBenchmarksForPullUpMethod.

[12] Christoph Reichenbach, Devin Coughlin, and Amer Diwan. Program meta-
morphosis. In ECOOP ’09.

[13] Max Schäfer and Oege de Moor. Specifying and implementing refactorings.
In SPLASH ’10.

[14] Max Schäfer, Julian Dolby, Manu Sridharan, Frank Tip, and Emina Torlak.
Correct refactoring of concurrent Java code. In ECOOP ’10.

[15] Max Schäfer, Torbjörn Ekman, and Oege de Moor. Sound and extensible
renaming for Java. In OOPSLA ’08.

[16] Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege de Moor. Step-
ping stones over the refactoring rubicon – lightweight language extensions
to easily realise refactorings. In ECOOP ’09.

[17] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a scripting
language for refactoring. In ICSE’06.

29

