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ABSTRACT

OpenACC provides a high-productivity API for program-
ming GPUs and similar accelerator devices. One of the last
steps in tuning OpenACC programs is selecting values for
the num gangs and vector length clauses, which control how
a parallel workload is distributed to an accelerator’s process-
ing units. In this paper, we present OptACC, an autotuner
that can assist the programmer in selecting high-quality val-
ues for these parameters, and we evaluate the effectiveness
of two direct search methods in finding solutions. We assess
the quality of the the num gangs and vector length values
found by our autotuner by comparing them to the values
found by a bounded exhaustive search; we also compare the
kernel execution times to those of the untuned kernel. On a
suite of 36 OpenACC kernels, one or both of our autotuner’s
direct search methods identified values within the top 5% for
29 of the kernels, within the top 10% for five kernels, and
within the top 25% for the remaining two. Eleven of the
kernels achieved a speedup greater than 2× over the com-
piler’s defaults, and the autotuner required only 7–11 runs
of the target program, on average.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel Programming
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1. INTRODUCTION
The OpenACC application programming interface [3] de-

fines OpenMP-like directives for C/C++ and Fortran that
allow loops to be marked for parallelization on a GPU or
similar accelerator device.

#pragma acc parallel loop
for (i = 0; i < n; ++i)

sum[i] = a[i] + b[i];
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As a simple example, the preceding loop adds the elements
of two arrays a and b, where each of the n iterations of the
loop is run as a separate thread on the accelerator (GPU).

For XSEDE users, OpenACC support is available via the
PGI compilers on Comet. GCC 5 will include OpenACC
support,1 which may eventually allow OpenACC programs
to be compiled on other XSEDE resources (e.g., Stampede).

OpenACC is important to the XSEDE community be-
cause it is especially well suited to scientific computing.
CUDA and OpenCL are the dominant APIs for program-
ming GPUs and other accelerator devices, but OpenACC
allows programmers to write GPU code more quickly and
productively. In the previous example, only a single pragma
is needed to offload the for loop to a GPU. The details
of initializing the GPU, transferring data, decomposing the
computation into threads, and launching the GPU kernel are
all left to the OpenACC compiler. In CUDA or OpenCL,
these responsibilities are all left to the programmer; writing
this same kernel takes significantly more code.

However, to achieve good performance, it is often neces-
sary to override some of the compiler’s decisions. This paper
focuses on two clauses, num gangs and vector length, which
control how the iterations of a loop are distributed to the
accelerator’s processing units. For example, appending

num_gangs(16), vector_length(32)

to the pragma in the previous example causes the PGI com-
piler to translate it into a CUDA kernel that launches 16
thread blocks with 32 threads per block.

Choosing optimal values for num gangs and vector length
is difficult, as they are affected by the hardware and com-
piler as well as characteristics of the kernel itself. A static
inspection of the code does not readily lead to values that
will produce optimal runtime performance.

This paper makes the following contributions:

• We describe OptACC, an autotuner that can, for a
fixed input size, find high-quality values for num gangs
and vector length. OptACC repeatedly selects candi-
date values, compiles and runs the target kernel with
those values, and evaluates their impact on execution
time. It is open source and available to XSEDE users.

• We illustrate the search spaces formed by several ker-
nels and describe empirically successful direct search
methods (Nelder-Mead and Coordinate Search).

• We evaluate our autotuner on 36 OpenACC kernels
to assess its effectiveness, considering the number of
points tested and comparing its results to compiler de-
faults and the results of a bounded exhaustive search.

1See https://gcc.gnu.org/wiki/OpenACC



2. RELATED WORK
Autotuning has primarily been successful in optimizing

implementations of particular algorithms; FFTW [11] and
SPIRAL [14] are two well-known examples. Fully general
autotuning—searching arbitrary configuration spaces with-
out a priori knowledge of the application domain—has been
less successful and is a much more challenging problem; one
recent effort is OpenTuner [5], which provides a framework
for building domain-specific autotuners by providing imple-
mentations of several general-purpose search algorithms and
providing the ability to incorporate domain-specific heuris-
tics and construct ensembles of search techniques.
Generally speaking, autotuning problems can be modeled

as mathematical optimization problems. Potential values for
the variables to be autotuned are collected in a tuple t. Let-
ting f(t) denote the running time of the program with that
particular set of tuning parameters, the goal of the autotun-
ing process is to minimize f(t) subject to constraints on the
individual tuning parameters. The function f is called the
objective function.
Evaluating f at a particular point requires running the

program and measuring its execution time. In other words,
the objective function is expensive to evaluate. Furthermore,
derivatives can only be approximated by finite differences.
So-called derivative-free optimization methods are designed
to find local extrema of such functions; direct search meth-
ods are derivative-free methods that proceed based solely
upon evaluations of the objective function without approx-
imating derivatives or model building [10, p. 115]. In this
paper, we focus on two classical direct search methods: the
Nelder-Mead method [13] and Coordinate Search [10, p. 116].
Balaprakash, Wild, and Hovland [6] investigated using

direct search algorithms to identify sequences of transfor-
mations to improve the performance of linear algebra ker-
nels (specifically, applying loop unrolling, scalar replace-
ment, loop parallelization, loop vectorization, and register
tiling). They implemented a random search, a simple ge-
netic algorithm, and two variations on the Nelder-Mead di-
rect search method (one of which we adopted in our work).
Siddiqui and Feki [15] addressed a more constrained prob-

lem. Given an OpenACC loop nest, they identified loops on
which to place gang and vector clauses, and then chose the
number of gangs and a vector length. They used a historic
learning approach. In a learning phase, they built a database
with the best tuning parameters for a particular application,
for different input sizes. To autotune a new input size for
the same application, they consulted that application’s his-
toric data for a similar input size and used it as a starting
point for their search.
Magni, Grewe, and Johnson [8] also addressed the prob-

lem of tuning the number of gangs and the vector length in
OpenACC loop nests. They concluded that (1) autotuning
could result in a speedup of up to 4.8× over compiler de-
faults, and (2) ideal numbers of gangs and vector lengths
vary according to input size, although similar numbers can
be used for similar input sizes. In their approach, train-
ing data is constructed by performing a random search over
many configurations (e.g., 2000). Then, when running the
program with a new input size, they used a Nearest Neigh-
bor approach, beginnning with configurations that worked
well for a nearby point (in terms of Euclidean distance).
The goal of the present paper is somewhat different. Un-

like the aforementioned papers [8, 15], our autotuner is de-

signed to find high-quality values for the number of gangs
and vector length for a fixed input size, without the benefit
of training or historic data.

3. TUNING OPENACC
NVIDIA suggests five steps for porting applications to

OpenACC (under the marketing slogan “2x in 5 steps” [2]),
which are described in more detail in a PGInsider article [9].
For most GPU codes, the most important aspect of tun-
ing is minimizing data transfer between the host and the
GPU. NVIDIA’s five steps reflect this. However, NVIDIA’s
fifth and final tuning step (“optimize parallel scheduling”) is
to add OpenACC clauses to override suboptimal compiler-
generated loop schedules. The performance impact is often
small, relative to the execution time of the entire applica-
tion, but it is nevertheless an important tuning step, and one
that is difficult to do by hand. The present work focuses on
this step.

According to the OpenACC standard [4, p. 8], “OpenACC
exposes these three levels of parallelism via gang, worker
and vector parallelism. Gang parallelism is coarse-grain. A
number of gangs will be launched on the accelerator. Worker
parallelism is fine-grain. Each gang will have one or more
workers. Vector parallelism is for SIMD or vector operations
within a worker.”

The OpenACC specification intentionally does not spec-
ify how these concepts should be mapped to any particular
hardware devices. However, for XSEDE users (and most
OpenACC developers at the present time), the only avail-
able OpenACC compiler is the PGI compiler, and the accel-
erator device will be an NVIDIA GPU. Thus, it is helpful
to recognize how the PGI compiler maps these OpenACC
concepts to NVIDIA hardware.

The NVIDIA GPU architecture is built around an array of
multithreaded streaming multiprocessors (SMs), which exe-
cute in parallel. Each SM contains several streaming proces-
sors (SPs), each of which executes a separate thread.

Typically, a GPU kernel consists of thousands of threads.
These threads are grouped into thread blocks. Each thread
block is assigned to a single SM. The threads within a block
are divided into 32-thread groups called warps, whose in-
structions issue in SIMD fashion. Each thread in a warp is
executed by a different SP in the SM.

As noted in Section 1, given the OpenACC clauses
num_gangs(16), vector_length(32),

the PGI compiler generates a CUDA kernel that launches
16 thread blocks with 32 threads per block. In other words,
the gangs are divided among the SMs, and the vector length
determines the number of CUDA threads in each block.2

Finding optimal values for num gangs and vector length
is difficult. They are affected by the hardware (e.g., cache
memory and register pressure), the compiler (e.g., transfor-
mations performed, loop scheduling, register allocation, and
instruction selection), as well as characteristics of the kernel
itself (e.g., input size, ratio of memory accesses to floating
point operations, and usage of functional units on the accel-
erator). Therefore, determining ideal num gangs and vec-
tor length values statically seems infeasible. Finding such
values empirically is the goal of our autotuner.

2If a num_workers clause is present, the PGI compiler ap-
pears to create a two-dimensional thread block, so the total
number of CUDA threads in the block is num workers ×
vector length.



$ cat example.c
#include <stdio.h>
#define N 16772240
int main() {

static double a[N];
#pragma acc parallel loop num_gangs(NUM_GANGS), vector_length(VECTOR_LENGTH)
for (int i = 0; i < N; i++)

a[i] = i;
return 0;

}
$ ~/OptACC/tuner.py \

--compile-command ’pgcc -acc -ta=nvidia,time -DNUM_GANGS={num_gangs} -DVECTOR_LENGTH={vector_length} example.c’ \
--executable ./a.out \
--kernel-timing

INFO [num_gangs: 256, vector_length: 128] Average: 1.051543, Standard Deviation: 0.004175
INFO [num_gangs: 224, vector_length: 64] Average: 1.052142, Standard Deviation: 0.004362
INFO [num_gangs: 224, vector_length: 128] Average: 1.052428, Standard Deviation: 0.004341
INFO [num_gangs: 256, vector_length: 64] Average: 1.051670, Standard Deviation: 0.004209
INFO [num_gangs: 288, vector_length: 128] Average: 1.051687, Standard Deviation: 0.004241
INFO -------------
INFO Tested 5 points
INFO Best result found: num_gangs=256 vector_length=128 => time=1.0515431 (stdev=0.0041747368633)

Figure 1: Running the OptACC autotuner on an example program using PGI-generated timing output.

4. AUTOTUNER
We have developed an autotuner, called OptACC, that

given an OpenACC parallel construct (typically a parallel
loop), identifies values that can be supplied in num gangs
and vector length clauses to improve execution time. Op-
tACC compiles the program with a particular choice of val-
ues, runs the program, and assesses the running time of the
kernel. Then, it adjusts the values, recompiles, reruns, and
repeats this process until it converges on values that appear
to result in the smallest running time. An example run is
shown in Figure 1.
The user invoking the autotuner typically supplies

• a target program, where the OpenACC parallel re-
gion(s) to autotune have been annotated as in Figure 1;

• a build command, which the autotuner can run to
recompile the target program with a particular choice
of values for num gangs and vector length; and

• the executable generated by the build command.

Then, the autotuner repeats the following steps.

1. Select candidate values for num gangs and vec-
tor length. By default, the autotuner chooses values
in the range 2–1024, although the user can override
the minimum and maximum values for num gangs and
vector length.

2. Compile the target program. The candidate val-
ues for num gangs and vector length can be inserted
directly into the compile command, as shown in Fig-
ure 1 (where they are used in externally-defined macros).
They are also stored in environment variables so they
can be accessed from a Makefile.

3. Run the target program, and extract timing in-
formation from its output. (See below for details.)

4. Terminate, or repeat from Step 1. Based on the
timing results, the autotuner will either terminate (af-
ter it has found an“optimal” time) or it will select new
values for num gangs and vector length, repeating the
process from Step 1.

In Step 3, the tuner executes the target program and ex-
tracts timing information. It is important to note that the
tuner does not measure the running time of the target pro-

gram; rather, it is the target program’s responsibility to mea-
sure the execution time of the affected kernel(s) and report
it to the autotuner. This can be done in one of two ways.

• The program can be compiled with the PGI
compiler’s -ta=nvidia,time flag, which links the
program with a profile library that collects and dis-
plays timing information about accelerator regions and
writes it to standard error after the program runs.

• The user can insert timing code into the pro-
gram and print the results to standard out-
put. A typical approach would be to insert calls to
omp_get_wtime() above and below a parallel loop, com-
pute the difference d of the two times, and then invoke
printf("time=%f\n", d). (If the timing output does
not have this exact form, the autotuner can be given a
command line flag with a regular expression providing
an alternative pattern to match.)

The tuner will run the program multiple times and collect
the average and standard deviation of the reported times.
(Again, the number of repetitions is configurable.) After au-
totuning completes, the tuner displays the results, including
the timing information for each (num gangs, vector length)
pair considered and the best result discovered (see Figure 1).
Results can also be written to a CSV file, Excel spreadsheet,
or gnuplot script for further analysis.

4.1 Search Methods
The tuner supports multiple search methods, including

exhaustive searches (grid searches) and direct search meth-
ods. Table 1 shows the search methods currently supported
by the autotuner, along with the number of (num gangs,
vector length) pairs tested before termination and what re-
strictions are placed on the candidate values for num gangs
and vector length.

Exhaustively testing a range of parameter values is an
effective way to determine good values for num gangs and
vector length. This is sometimes called a grid search or pa-
rameter sweep and is implemented by the grid methods in
Table 1. However, it requires compiling and running the tar-
get program many times. For example, testing all multiples
of 32 between 32 and 1024 requires compiling and running



Search Method Num. Points Values Considered
Tested num gangs vector length

grid32 1024 Multiples of 32 Multiples of 32
grid64 256 Multiples of 64 Multiples of 64
grid128 64 Multiples of 128 Multiples of 128
grid32-vlpow2 320 Multiples of 32 Powers of 2
grid-pow2 100 Powers of 2 Powers of 2
nelder-mead Varies (avg. 7) Candidate multiples of 32 Candidate powers of 2
coord-search Varies (avg. 11) Candidate multiples of 32 Candidate powers of 2

Table 1: Search methods supported by the OptACC autotuner.

the program 1024 times—impractical for most applications.
Therefore, it is preferable to use a more advanced search

technique that can evaluate just a few points and use timing
data from those points to efficiently determine which other
points should be tested and which can be ignored. This is the
goal of the Nelder-Mead and Coordinate Search methods.

4.2 Autotuning as an Optimization Problem
To approach the problem of autotuning OpenACC ker-

nels, we model it as a mathematical optimization problem

minimize f(g, v)
subject to gmin ≤ g ≤ gmax

vmin ≤ v ≤ vmax,

where g represents the value of num gangs, v represents the
value of vector length, and f(g, v) is the objective function
corresponding to the OpenACC kernel being tuned. In our
case, the objective is to minimize the runtime of the ker-
nel, so f(g, v) maps (num gangs, vector length) pairs to the
runtime of the kernel when compiled using those parameters.
gmin and gmax are respectively the minimum and maximum
allowable values for num gangs, and may be configured by
the user or left as default values 2 and 1024. vmin and vmax

are respectively the minimum and maximum allowable val-
ues for vector length and are again configurable, with de-
faults 2 and 1024.
We can visualize the behavior of the objective function

f(g, v) by treating (num gangs, vector length) pairs as points
in the Cartesian plane and associating with each point the
runtime of the kernel, giving a three-dimensional surface
plot. Figure 2 gives the surfaces plotted from the exhaustive
test data for several benchmarks.
Optimization is a well-studied problem in mathematics,

however our objective function f(g, v) presents several chal-
lenges for standard optimization methods:

• Evaluating f(g, v) is time-consuming, since it requires
recompiling and running the program.

• n and v cannot take arbitrary real values. Setting
num gangs or vector length to 32.6 or −10, for ex-
ample, is not possible. In fact, we often add additional
constraints; for example, we may restrict v to multiples
of 32 or powers of 2 (see Table 1).

• Derivative information about f(g, v) is unavailable.

We focus therefore on a special class of optimization methods
called direct search methods, which seek optimal solutions
while relying only on evaluations of the objective function.
For our tuner, we implemented two well-known direct search
methods: a modified Nelder-Mead method and a Coordinate
Search method. To optimize an objective over n variables,
the Nelder-Mead algorithm uses a simplex of n+1 vertices;
on each iteration, the simplex is transformed by reflection,

expansion, contraction, and shrinkage based on the values
of selected points in or calculated from the simplex [13, 17].
The method terminates when the points in the simplex are
arbitrarily close together and the evaluations of the objective
function at the points in the simplex are arbitrarily close.

Our objective function is not continuous over the real
numbers, since num gangs and vector length are required
to be integers, and in some cases they are restricted to pow-
ers of 2 (due to a PGI compiler bug). Therefore, we im-
plemented a modified Nelder-Mead method that considers
only those points which correspond to valid (num gangs,
vector length) pairs, using an adaptation of the modifica-
tions presented in [6]. Any time the modified Nelder-Mead
method calculates a new point to test, the point is rounded
to the nearest valid (num gangs, vector length) pair. Since
we restrict the points in the simplex by rounding, the ter-
mination condition described above is not applicable to our
problem. Instead, we consider the method to have converged
if the same point appears more than once in the simplex.

The new points calculated in each step of the Nelder-Mead
algorithm are controlled by the values of the constants for
reflection, expansion, contraction, and shrinkage ρ, χ, γ, and
σ, respectively. For our implementation, we chose

ρ = 1, χ = 2, γ = 0.5, and σ = 0.5.

As noted in [17], this choice of values is nearly universal.
The Coordinate Search method (in two dimensions) starts

with an initial point x and an initial step size α > 0. (Our
implementation uses α = 256.) It evaluates f at the four
points α units above, below, and to the left and right of x.
If any of the four points results in a smaller value of f , then
x is reset to that point, and the process repeats. If none of
the four points produces a smaller value of f , the step size
α is reduced, and x remains unchanged. Our implementa-
tion reduces the step size to 0.75α and terminates after two
consecutive unsuccessful iterations. Both the Nelder-Mead
and Coordinate Search implementations use 256 gangs and a
vector length of 128 as their initial point (the PGI compiler
frequently chooses these as defaults).

Conceptually, both Nelder-Mead and Coordinate Search
sample values of the objective function near a particular
point, move in a direction that appears likely to lead “down-
hill” from that point, and repeat. Such methods are heuristic
and are certainly not guaranteed to find a global minimum.
Nevertheless, visualizing walking downhill on the surfaces in
Figure 2 suggests why these search methods are likely to be
successful: With the right starting point, walking downhill
will almost always lead to a good, if not optimal, value. In
particular, many of the 36 kernels we tested had a shape
comparable to that of the covariance 2 benchmark, which
is very amenable to this type of search.
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Figure 2: Examples of surfaces formed from (num gangs, vector length, time) triples.

5. EVALUATION & DISCUSSION
We aimed to answer the following questions:

• RQ1: Benefit. Does tuning the number of gangs and
vector length produce a speedup?

• RQ2: Quality. Can the autotuner find high-quality
values for num gangs and vector length with only a
few runs of the target program? How do the num-
ber of gangs and vector length found by direct search
methods compare to optimal values found by a grid
search?

5.1 Test Codes & Results
To answer these questions, we evaluated our autotuner on

36 kernels: 25 from the EPCC OpenACC Benchmarks [1,12]

and 11 from an OpenACC translation of MiniGhost [7]. All
kernels were compiled using the PGI Accelerator3 and run on
DMC4. DMC’s Kepler nodes have 2.5 GHz Intel Xeon (Ivy
Bridge) CPUs, 128 GB of RAM, and Tesla K20m GPUs.

To assess the quality of the Nelder-Mead and Coordi-
nate Search results, we obtained bounded exhaustive tim-
ing data for each kernel to use for comparison. We used
OptACC’s grid32 grid search strategy when possible. For
time-consuming kernels, we used the grid64 strategy. A bug
in the PGI compiler caused a runtime failure when a kernel

3pgcc 14.9-0 64-bit target on x86-64 Linux -tp nehalem.
4https://www.asc.edu/html/dmc.shtml. At the time of
data collection, Comet (the only XSEDE resource support-
ing OpenACC) was not yet online. DMC’s Kepler GPUs are
comparable to those on Stampede.



with a reduction clause had a vector length that was not
a power of two; therefore, some EPCC Level 1 benchmarks
had to be evaluated using the grid32-vlpow2 strategy.
To obtain timing data for each kernel, we inserted calls to

omp_get_wtime above and below each parallel loop, inside
the data directive if one was given. (The timer has a mi-
crosecond resolution according to omp_get_wtick.) Using
OpenMP timers (as opposed to the timing data produced
by the PGI compiler’s -ta=nvidia,time option) allowed us
to measure the execution time of the specific parallel loop
being tuned.
The results of our evaluation are shown in Figure 3. The

bar graphs at the top show the average running times for
each kernel (with standard deviations indicated by error
bars). The Untuned bar shows the kernel’s execution time
with the num_gangs and vector_length clauses omitted, in
which case the compiler selects default values. The Nelder-
Mead and Coord. Search bars show the runtimes after auto-
tuning using the respective direct search method. The Grid
Search bar shows the smallest execution time obtained by
a grid search (i.e., a bounded exhaustive search of feasible
parameter values), which provided a basis of comparison for
the more efficient search methods.
The columns of the table are as follows:

• Kernel provides the name of the benchmark and, if
there were multiple kernels in a file, the (sequential)
number of the kernel that was tuned.

• Grid Search identifies the method used to obtain
bounded exhaustive timing data.

• The Speedup columns show the speedup from the
untuned time to the best time found by each method.

• After the direct search methods found a local opti-
mum, we compared the timing data for that point to
the exhaustive timing data. The Pct column shows
the percentile of the point obtained by the direct search
method, with respect to the exhaustive timing data.

• TheCount column reports the number of points tested
by each direct search method, i.e., the number of times
the target program had to be compiled and executed.

• Better indicates which direct search method found the
higher-quality point (by percentile). If both methods
found points in the same percentile, the method that
tested fewer points is shown.

5.2 RQ1: Benefit
Does tuning the number of gangs and vector length produce

a speedup?
In Figure 3, theGrid Speedup column shows the speedup

of the best point found by a grid search. This is, in theory,
the maximum speedup that could possibly be obtained by
either Nelder-Mead or Coordinate Search. The speedups of
those methods are shown under their respective headings.
The EPCC Benchmarks are divided into two groups. The

Level 1 benchmarks are BLAS-like kernels, ported from the
Polybench and Polybench/GPU benchmark suites. Eleven
of the 22 Level 1 benchmarks were able to achieve a speedup
greater than 2×. Three kernels achieved speedups above 5×;
in all three cases, the optimal number of gangs was quite
large (the PGI compiler tends to choose smaller numbers
as defaults). The three Level 2 benchmarks are application
codes. Although the runtime of the le2d benchmark was
improved by a few milliseconds, varying the number of gangs

and vector length had very little impact on the performance
of the Level 2 benchmarks overall.

MiniGhost contained OpenACC kernels in three files. The
kernel from MG_ALLREDUCE (a sum reduction) achieved a sig-
nificant speedup, as did two of the six kernels from MG_PACK

(which are essentially data copies). MiniGhost’s four stencil
computation kernels occupy the majority of the GPU time,
according to a profile, but the compiler’s default choices were
good; none of them benefited from autotuning.

5.3 RQ2: Optimality
Can the autotuner find high-quality values for num gangs

and vector length with only a few runs of the target program?
How do the number of gangs and vector length found by di-
rect search methods compare to optimal values found by a
bounded exhaustive (grid) search?

The goal of the Nelder-Mead and Coordinate Search meth-
ods is to find high-quality points while testing relatively few
points. The last four columns in Table 1 show the quality
of the results obtained by these methods.

With the Nelder-Mead search:

• In all but four cases, the suggested point was in the
top 25% of points found by a grid search.

• In 19 of the 36 kernels, the point was in the top 5%.

• The search converged after evaluating 7 points, on av-
erage, and 24 points in the worst case.

With the Coordinate Search:

• All points found were in the top 25% of points found
by a grid search.

• In 22 of the 36 kernels, the point was in the top 5%.

• The search converged after evaluating 11 points, on
average, and 20 points in the worst case.

Thus, both methods were successful in finding high-quality
points. However, as the last column in Table 1 indicates,
neither method was universally better than the other.

5.4 Limitations
Neither Nelder-Mead nor Coordinate Search is guaran-

teed to find a global minimum, and the exact local mini-
mum found depends heavily on the choice of an initial sim-
plex/initial point and other parameters. Our choices worked
well on the 36 kernels we tested. Although the intent of
a benchmark suite, such as the EPCC OpenACC bench-
marks, is to be representative of a larger class of codes, this is
not guaranteed. For example, some MiniGhost kernels per-
formed well with very small numbers of gangs—smaller than
any of those required by the EPCC suite. The autotuner’s
algorithms may benefit from additional modifications as it
is employed on a larger number of applications.

In addition, the authors had access to only one produc-
tion OpenACC compiler—PGI Accelerator5—and focused
on one NVIDIA GPU. The hardware and compiler both im-
pact the shape of the autotuning surface.

Finally, while some of the kernels obtained impressive
speedups, the reader is cautioned that these are only kernel
execution times, which in most cases were just a few mil-
liseconds (e.g., syr2k k2 dropped from 8.26 ms to 1.10 ms).
In a larger application, accelerator kernels are often just a
fraction of the total runtime. Amdahl’s Law always applies.

5Unfortunately, CAPS is no longer in business.
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gemm 32 1.11× 1.11× 0% 24 0.92× 1% 15 NM
gesummv 32-vlpow2 1.39× 1.38× 1% 4 1.36× 3% 11 NM
mvt (1) 32-vlpow2 1.47× 1.40× 7% 9 1.45× 1% 8 CS
mvt (2) 32-vlpow2 3.48× 3.25× 5% 10 3.36× 18% 4 NM
syr2k (1) 32 1.35× 1.30× 2% 7 1.30× 2% 9 NM
syr2k (2) 32 7.49× 7.47× 3% 7 6.51× 10% 8 NM
syrk (1) 32 1.30× 1.26× 8% 8 1.26× 4% 11 CS
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Figure 3: Evaluation results. The complete data set is available at https://github.com/OptACC/Benchmark-Data.



6. FUTURE WORK
Our autotuner is open source software and is available

on GitHub at https://github.com/OptACC/OptACC. We
have tested it on Linux systems using Python 2.6.9, 2.7.3,
and 3.4.3. The complete evaluation data set, including sur-
face plots for all kernels (as in Figure 2), is available from
https://github.com/OptACC/Benchmark-Data.
There are a number of directions for future work.
Support source code modification. OptACC currently re-

quires that the user manually prepare files for tuning by
adding num gangs and vector length clauses to their Ope-
nACC parallel directives. The user must also add timing
code manually if PGI’s timers are not used. In the future,
the tuner could insert appropriate clauses and timing code
directly into the user’s source code. This would be especially
valuable in an IDE like Eclipse, where the user could select
a loop and autotune it with a single mouse click.
Autotune for worker parallelism. We have omitted tun-

ing num workers, since is infrequently used with the PGI
compiler and NVIDIA GPUs, although the autotuner would
benefit from its addition, particularly when used with other
compilers and accelerators.
Integrate static analyses. Autotuning could also benefit

from the integration of a parser and static analyses. For
example, a loop nest with only gang and vector loops does
not need to be tuned for worker parallelism, and a priori
knowledge of the number of loop iterations could be used to
inform the search (e.g., by changing the initial simplex for
the Nelder-Mead algorithm).
Integrate compiler diagnostics. Currently, the autotuner is

unaware of what num gangs and vector length values were
chosen by the compiler as its defaults. In the future, it
may be beneficial to use the compiler’s values to seed the
autotuning process.
Autotune across multiple input sizes. As other authors

have noted [8], autotuning results for one input size are not
necessarily optimal for other input sizes. Autotuning across
multiple input sizes without the benefit of historic or train-
ing data remains an open problem.
Integrate other transformations. The possibilities for au-

totuning OpenACC code extend far beyond simply tuning
the number of gangs and the vector length of a parallel re-
gion. As other authors have noted, an autotuner could also
place gang, worker, and vector clauses in a loop nest [15] or
even make other compiler-like transformations to the pro-
gram [6]. These are significantly more difficult search prob-
lems, but they are also problems for which a breakthrough
result would be extremely valuable.
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